Skip to main content
Erschienen in: Colloid and Polymer Science 9/2020

14.07.2020 | Original Contribution

Influence of non-rubber components on film formation behavior of natural rubber latex

verfasst von: Yan-Chan Wei, Jie-Hui Xia, Ling Zhang, Ting-Ting Zheng, Shuangquan Liao

Erschienen in: Colloid and Polymer Science | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dipping product of natural rubber (NR) latex has superior comprehensive properties superior to those made from synthetic latex. Compared with synthetic latex, the component characteristics of NR show the existence of non-rubber components (NRC). In this paper, NRC, mainly proteins and phospholipids, are separately removed by enzyme treatment to study their effect on the film formation behavior of natural rubber latex. The changes of NR latex particles are in situ visualize by using freeze-drying SEM technology and AFM during the film formation process. The results demonstrate that contact, deformation, and coalescence of latex particles occur more readily after the removal of proteins and phospholipids. It shows that removing NRC can quicken NR film formation. However, the mechanical properties of the NR film decrease in the absence of NRC. Based on the research, a film formation mechanism for NR latex is proposed, which can provide a more insightful understanding toward the structure-property relationship of NR film.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tang CR, Yang M, Yu J, Hu SN, Huang HS (2016) The rubber tree genome reveals new insights into rubber production and species adaptation. Nat Plants 2:16073–16082PubMed Tang CR, Yang M, Yu J, Hu SN, Huang HS (2016) The rubber tree genome reveals new insights into rubber production and species adaptation. Nat Plants 2:16073–16082PubMed
2.
Zurück zum Zitat Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36PubMed Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36PubMed
3.
Zurück zum Zitat Liu H, Huang GS, Wei LY, Zeng J, Fu X, Huang C, Wu JR (2019) Inhomogeneous natural network promoting strain-induced crystallization: a mesoscale model of natural rubber. Chinese J Polym Sci 37:1142–1151 Liu H, Huang GS, Wei LY, Zeng J, Fu X, Huang C, Wu JR (2019) Inhomogeneous natural network promoting strain-induced crystallization: a mesoscale model of natural rubber. Chinese J Polym Sci 37:1142–1151
4.
Zurück zum Zitat Tanaka Y (2001) Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chem Tech 74:355–375 Tanaka Y (2001) Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chem Tech 74:355–375
5.
Zurück zum Zitat Li DF, Li SH, Cui DM, Zhang XQ (2010) β-Diketiminato rare-earth metal complexes. Structures, catalysis, and active species for highlycis-1,4-selective polymerization of isoprene. Organometallics 29:2186–2193 Li DF, Li SH, Cui DM, Zhang XQ (2010) β-Diketiminato rare-earth metal complexes. Structures, catalysis, and active species for highlycis-1,4-selective polymerization of isoprene. Organometallics 29:2186–2193
6.
Zurück zum Zitat Amnuaypornsri S, Sakdapipanich J, Tanaka Y (2009) Green strength of natural rubber: the origin of the stress-strain behavior of natural rubber. J Appl Polym Sci 111:2127–2133 Amnuaypornsri S, Sakdapipanich J, Tanaka Y (2009) Green strength of natural rubber: the origin of the stress-strain behavior of natural rubber. J Appl Polym Sci 111:2127–2133
7.
Zurück zum Zitat Joanicot M, Wong K, Maquet J, Chevalier Y, Cabane B (1990) Ordering of latex particles during film formation. Colloid Polym Sci 81:175–183 Joanicot M, Wong K, Maquet J, Chevalier Y, Cabane B (1990) Ordering of latex particles during film formation. Colloid Polym Sci 81:175–183
8.
Zurück zum Zitat Juhue JLD (1995) Film formation from dispersion of core-shell latex particles. Macromolecules 28:1306–1308 Juhue JLD (1995) Film formation from dispersion of core-shell latex particles. Macromolecules 28:1306–1308
9.
Zurück zum Zitat Chevalier Y, Pichot C, Graillat C, Joanicot M, Cabane B (1992) Film formation with latex particles. Colloid Polym Sci 270:806–821 Chevalier Y, Pichot C, Graillat C, Joanicot M, Cabane B (1992) Film formation with latex particles. Colloid Polym Sci 270:806–821
10.
Zurück zum Zitat Sakdapipanich JT, Nawamawat K, Kawahara S (2002) Characterization of the large and small rubber particles in fresh Hevea latex. Rubber Chem Technol 75:179–185 Sakdapipanich JT, Nawamawat K, Kawahara S (2002) Characterization of the large and small rubber particles in fresh Hevea latex. Rubber Chem Technol 75:179–185
11.
Zurück zum Zitat Manus S, Adun N, Sirirat K, Chakrit S, Jitladda S, Shigeyuki T (2018) Viscoelastic and mechanical properties of large- and small-particle natural rubber before and after vulcanization. Polym Test 70:127–134 Manus S, Adun N, Sirirat K, Chakrit S, Jitladda S, Shigeyuki T (2018) Viscoelastic and mechanical properties of large- and small-particle natural rubber before and after vulcanization. Polym Test 70:127–134
12.
Zurück zum Zitat Sriring M, Nimpaiboon A, Kumarn S, Takahara A, Sakdapipanich J (2019) Enhancing viscoelastic and mechanical performances of natural rubber through variation of large and small rubber particle combinations. Polym Test 81:106225 Sriring M, Nimpaiboon A, Kumarn S, Takahara A, Sakdapipanich J (2019) Enhancing viscoelastic and mechanical performances of natural rubber through variation of large and small rubber particle combinations. Polym Test 81:106225
13.
Zurück zum Zitat Xiang Q, Xia KC, Dai LJ, Kang GJ, Li Y, Nie ZY, Duan CF, Zeng RH (2012) Proteome analysis of the large and the small rubber particles of Hevea brasiliensis using 2D-DIGE. Plant Physiol Bioch 60:207–213 Xiang Q, Xia KC, Dai LJ, Kang GJ, Li Y, Nie ZY, Duan CF, Zeng RH (2012) Proteome analysis of the large and the small rubber particles of Hevea brasiliensis using 2D-DIGE. Plant Physiol Bioch 60:207–213
14.
Zurück zum Zitat Oouchi M, Ukawa J, Ishii Y, Maeda H (2019) Structural analysis of the terminal groups in commercial hevea natural rubber by 2D-NMR with DOSY filters and multiple-wet methods using ultrahigh-field NMR. Biomacromolecules 20:1394–1400PubMed Oouchi M, Ukawa J, Ishii Y, Maeda H (2019) Structural analysis of the terminal groups in commercial hevea natural rubber by 2D-NMR with DOSY filters and multiple-wet methods using ultrahigh-field NMR. Biomacromolecules 20:1394–1400PubMed
15.
Zurück zum Zitat Tanaka Y, Tarachiwin L (2009) Recent advances in structural characterization of natural rubber. Rubber Chem Technol 82:283–314 Tanaka Y, Tarachiwin L (2009) Recent advances in structural characterization of natural rubber. Rubber Chem Technol 82:283–314
16.
Zurück zum Zitat Kosugi K, Kawahara S (2015) Natural rubber with nanomatrix of non-rubber components observed by focused ion beam-scanning electron microscopy. Colloid Polym Sci 293:135–141 Kosugi K, Kawahara S (2015) Natural rubber with nanomatrix of non-rubber components observed by focused ion beam-scanning electron microscopy. Colloid Polym Sci 293:135–141
17.
Zurück zum Zitat Huang C, Huang G, Li S, Luo M, Liu H, Fu X, Qu W, Xie Z, Wu J (2018) Research on architectur and composition of natural network in natural rubber. Polymer 154:90–100 Huang C, Huang G, Li S, Luo M, Liu H, Fu X, Qu W, Xie Z, Wu J (2018) Research on architectur and composition of natural network in natural rubber. Polymer 154:90–100
18.
Zurück zum Zitat Chaikumpollert O, Yamamoto Y, Suchiva K, Kawahara S (2012) Protein-free natural rubber. Colloid Polym Sci 290:331–338 Chaikumpollert O, Yamamoto Y, Suchiva K, Kawahara S (2012) Protein-free natural rubber. Colloid Polym Sci 290:331–338
19.
Zurück zum Zitat Sansatsadeeku J, Sakdapipanich J, Rojruthai P (2011) Characterization of associated proteins and phospholipids in natural rubber latex. J Biosci Bioeng 111:628–634 Sansatsadeeku J, Sakdapipanich J, Rojruthai P (2011) Characterization of associated proteins and phospholipids in natural rubber latex. J Biosci Bioeng 111:628–634
20.
Zurück zum Zitat Chaikumpollert O, Yamamoto Y, Suchiva K, Nghia PT, Kawahara S (2012) Preparation and characterization of protein-free natural rubber. Polym Advan Technol 23:825–828 Chaikumpollert O, Yamamoto Y, Suchiva K, Nghia PT, Kawahara S (2012) Preparation and characterization of protein-free natural rubber. Polym Advan Technol 23:825–828
21.
Zurück zum Zitat Wu J, Qu W, Huang G, Wang S, Liu H (2017) Super-resolution fluorescence imaging of spatial organization of proteins and lipids in natural rubber. Biomacromolecules 18:1705–1712PubMed Wu J, Qu W, Huang G, Wang S, Liu H (2017) Super-resolution fluorescence imaging of spatial organization of proteins and lipids in natural rubber. Biomacromolecules 18:1705–1712PubMed
22.
Zurück zum Zitat Nawamawat K, Sakdapipanich JT, Ho CC, Ma Y, Song J, Vancso JG (2011) Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloid Surface A 390:157–166 Nawamawat K, Sakdapipanich JT, Ho CC, Ma Y, Song J, Vancso JG (2011) Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloid Surface A 390:157–166
23.
Zurück zum Zitat Rochette CN, Crassous JJ, Drechsler M, Gaboriaud F, Eloy M, B-d G, Duval JFL (2013) Shell structure of natural rubber particles: evidence of chemical stratification by electrokinetics and Cryo-TEM. Langmuir 29:14655–14665PubMed Rochette CN, Crassous JJ, Drechsler M, Gaboriaud F, Eloy M, B-d G, Duval JFL (2013) Shell structure of natural rubber particles: evidence of chemical stratification by electrokinetics and Cryo-TEM. Langmuir 29:14655–14665PubMed
24.
Zurück zum Zitat Toki S, Che J, Rong L, Hsiao BS, Amnuaypornsri S, Nimpaiboon A, Sakdapipanich J (2013) Entanglements and networks to strain-induced crystallization and stress-strain relations in natural rubber and synthetic polyisoprene at various temperatures. Macromolecules 46:5238–5248 Toki S, Che J, Rong L, Hsiao BS, Amnuaypornsri S, Nimpaiboon A, Sakdapipanich J (2013) Entanglements and networks to strain-induced crystallization and stress-strain relations in natural rubber and synthetic polyisoprene at various temperatures. Macromolecules 46:5238–5248
25.
Zurück zum Zitat Tarachiwin L, Sakdapipanich J, Ute K, Kitayama T, Bamba T, E-i F, Kobayashi A, Tanaka Y (2005) Structural characterization of α-terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments. Biomacromolecules 6:1851–1857PubMed Tarachiwin L, Sakdapipanich J, Ute K, Kitayama T, Bamba T, E-i F, Kobayashi A, Tanaka Y (2005) Structural characterization of α-terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments. Biomacromolecules 6:1851–1857PubMed
26.
Zurück zum Zitat Karino T, Ikeda Y, Yasuda Y, Kohjiya S, Shibayama M (2007) Nonuniformity in natural rubber as revealed by small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscopy. Biomacromolecules 8:693–699PubMed Karino T, Ikeda Y, Yasuda Y, Kohjiya S, Shibayama M (2007) Nonuniformity in natural rubber as revealed by small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscopy. Biomacromolecules 8:693–699PubMed
27.
Zurück zum Zitat Toki S, Burger C, Hsiao BS, Amnuaypornsri S, Sakdapipanich J, Tanaka Y (2008) Multi-scaled microstructures in natural rubber characterized by synchrotron X-ray scattering and optical microscopy. J Polym Sci Polym Phys 46:2456–2464 Toki S, Burger C, Hsiao BS, Amnuaypornsri S, Sakdapipanich J, Tanaka Y (2008) Multi-scaled microstructures in natural rubber characterized by synchrotron X-ray scattering and optical microscopy. J Polym Sci Polym Phys 46:2456–2464
28.
Zurück zum Zitat Liu J, Wu S, Tang Z, Lin T, Guo B, Huang G (2015) New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy. Soft Matter 11:2290–2299PubMed Liu J, Wu S, Tang Z, Lin T, Guo B, Huang G (2015) New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy. Soft Matter 11:2290–2299PubMed
29.
Zurück zum Zitat Kawahara S, Kakubo T, Sakdapipanich JT, Isono Y, Tanaka Y (2000) Characterization of fatty acids linked to natural rubber-role of linked fatty acids on crystallization of the rubber. Polymer 41:7483–7488 Kawahara S, Kakubo T, Sakdapipanich JT, Isono Y, Tanaka Y (2000) Characterization of fatty acids linked to natural rubber-role of linked fatty acids on crystallization of the rubber. Polymer 41:7483–7488
30.
Zurück zum Zitat Xie ZT, Luo MC, Huang C, Wei LY, Liu YH, Fu XM (2018) Effects of graphene oxide on the strain-induced crystallization and mechanical properties of natural rubber crosslinked by different vulcanization systems. Polymer 151:279–286 Xie ZT, Luo MC, Huang C, Wei LY, Liu YH, Fu XM (2018) Effects of graphene oxide on the strain-induced crystallization and mechanical properties of natural rubber crosslinked by different vulcanization systems. Polymer 151:279–286
31.
Zurück zum Zitat Chen LJ, Gou XH, Luo YF, Jia ZX, Bai J, Chen YJ, Jia DM (2018) Effect of novel supported vulcanizing agent on the interfacial interaction and strain-induced crystallization properties of natural rubber nanocomposites. Polymer 148:390–399 Chen LJ, Gou XH, Luo YF, Jia ZX, Bai J, Chen YJ, Jia DM (2018) Effect of novel supported vulcanizing agent on the interfacial interaction and strain-induced crystallization properties of natural rubber nanocomposites. Polymer 148:390–399
32.
Zurück zum Zitat Zhou Y, Kosugi K, Yamamoto Y, Kawahara S (2016) Effect of nonrubber components on the mechanical properties of natural rubber. Polym Advan Technol 28:159–165 Zhou Y, Kosugi K, Yamamoto Y, Kawahara S (2016) Effect of nonrubber components on the mechanical properties of natural rubber. Polym Advan Technol 28:159–165
33.
Zurück zum Zitat Chaikumpollert O, Yamamoto Y, Suchiva K, Kawahara S (2012) Mechanical properties and cross-linking structure of cross-linked natural rubber. Polym J 44:772–777 Chaikumpollert O, Yamamoto Y, Suchiva K, Kawahara S (2012) Mechanical properties and cross-linking structure of cross-linked natural rubber. Polym J 44:772–777
34.
Zurück zum Zitat Amnuaypornsri S, Sakdapipanich J, Toki S, Hsiao BS, Ichikawa N, Tanaka Y (2008) Strain-induced crystallization of natural rubber: effect of proteins and phospholipids. Rubber Chem Technol 81:753–766 Amnuaypornsri S, Sakdapipanich J, Toki S, Hsiao BS, Ichikawa N, Tanaka Y (2008) Strain-induced crystallization of natural rubber: effect of proteins and phospholipids. Rubber Chem Technol 81:753–766
35.
Zurück zum Zitat Pipattananukul N, Ariyawiriyanan W, Kawahara S (2014) Thermal behavior of vulcanized deproteinzed natural rubber nano-composites. Energy Procedia 56:634–640 Pipattananukul N, Ariyawiriyanan W, Kawahara S (2014) Thermal behavior of vulcanized deproteinzed natural rubber nano-composites. Energy Procedia 56:634–640
36.
Zurück zum Zitat Lee JTY, Chow KL (2012) SEM sample preparation for cells on 3D scaffolds by freeze-drying and HMDS. Scanning 34:12–25PubMed Lee JTY, Chow KL (2012) SEM sample preparation for cells on 3D scaffolds by freeze-drying and HMDS. Scanning 34:12–25PubMed
37.
Zurück zum Zitat Ivan'Kova EM, Dobrovolskaya IP, Popryadukhin PV, Kryukov A, Yudin VE, Morganti P (2016) In-situ cryo-SEM investigation of porous structure formation of chitosan sponges. Polym Test 52:41–45 Ivan'Kova EM, Dobrovolskaya IP, Popryadukhin PV, Kryukov A, Yudin VE, Morganti P (2016) In-situ cryo-SEM investigation of porous structure formation of chitosan sponges. Polym Test 52:41–45
38.
Zurück zum Zitat Bogner A, Thollet G, Basset D, Jouneau P-H, Gauthier C (2005) Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104:290–301PubMed Bogner A, Thollet G, Basset D, Jouneau P-H, Gauthier C (2005) Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104:290–301PubMed
39.
Zurück zum Zitat Pralhad T, Rajendrakumar K (2004) Study of freeze-dried quercetin-cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharmaceut Biomed 34:333–339 Pralhad T, Rajendrakumar K (2004) Study of freeze-dried quercetin-cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharmaceut Biomed 34:333–339
40.
Zurück zum Zitat Kim C, Beuve JS, Guilbert S, Bonfils F (2009) Study of chain branching in natural rubber using size-exclusion chromatography coupled with a multi-angle light scattering detector (SEC-MALS). Eur Polym J 45:2249–2259 Kim C, Beuve JS, Guilbert S, Bonfils F (2009) Study of chain branching in natural rubber using size-exclusion chromatography coupled with a multi-angle light scattering detector (SEC-MALS). Eur Polym J 45:2249–2259
41.
Zurück zum Zitat Tarachiwin L, Sakdapipanich J, Ute K, Kitayama T, Tanaka Y (2005) Structural characterization of α-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Biomacromolecules 6:1858–1863PubMed Tarachiwin L, Sakdapipanich J, Ute K, Kitayama T, Tanaka Y (2005) Structural characterization of α-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Biomacromolecules 6:1858–1863PubMed
42.
Zurück zum Zitat Sakdapipanich JT (2007) Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments. J Biosci Bioeng 103:287–292PubMed Sakdapipanich JT (2007) Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments. J Biosci Bioeng 103:287–292PubMed
43.
Zurück zum Zitat Luo M-C, Zeng J, Fu X, Huang G, Wu J (2016) Toughening diene elastomers by strong hydrogen bond interactions. Polymer 106:21–28 Luo M-C, Zeng J, Fu X, Huang G, Wu J (2016) Toughening diene elastomers by strong hydrogen bond interactions. Polymer 106:21–28
44.
Zurück zum Zitat Wei Y-C, Liu G-X, Zhang H-F, Zhao F, Luo M-C, Liao S (2019) Non-rubber components tuning mechanical properties of natural rubber from vulcanization kinetics. Polymer 183:121911–121917 Wei Y-C, Liu G-X, Zhang H-F, Zhao F, Luo M-C, Liao S (2019) Non-rubber components tuning mechanical properties of natural rubber from vulcanization kinetics. Polymer 183:121911–121917
45.
Zurück zum Zitat Wei Y-C, Liu G-X, Zhang L, Xu W-Z, Liao S, Luo M-C (2020) Mimicking mechanical robustness of natural rubber based on sacrificial network constructed by phospholipids. ACS Appl Mater Interfaces 12:14468–14475PubMed Wei Y-C, Liu G-X, Zhang L, Xu W-Z, Liao S, Luo M-C (2020) Mimicking mechanical robustness of natural rubber based on sacrificial network constructed by phospholipids. ACS Appl Mater Interfaces 12:14468–14475PubMed
46.
Zurück zum Zitat Yu W-W, Xu W-Z, Xia J-H, Wei Y-C, Liao S, Luo M-C (2020) Toughening natural rubber by the innate sacrificial network. Polymer 194:122419–122425 Yu W-W, Xu W-Z, Xia J-H, Wei Y-C, Liao S, Luo M-C (2020) Toughening natural rubber by the innate sacrificial network. Polymer 194:122419–122425
Metadaten
Titel
Influence of non-rubber components on film formation behavior of natural rubber latex
verfasst von
Yan-Chan Wei
Jie-Hui Xia
Ling Zhang
Ting-Ting Zheng
Shuangquan Liao
Publikationsdatum
14.07.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 9/2020
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-020-04703-7

Weitere Artikel der Ausgabe 9/2020

Colloid and Polymer Science 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.