Skip to main content
Erschienen in: Journal of Nanoparticle Research 8/2020

01.08.2020 | Research paper

Influence of size, shape and dimension on glass transition and Kauzmann temperature of silver (Ag) and tantalum (Ta) nanoparticles

verfasst von: Chetna S. Tiwari, Arun Pratap, Prafulla K. Jha

Erschienen in: Journal of Nanoparticle Research | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A simple model is developed for the investigation of size, shape and dimension dependent glass transition temperature (Tg) and Kauzmann temperature (TK) of nanoparticles. The model is based on thermodynamical quantity cohesive energy and is free from fitting parameters and approximations. To check the validity of the model, calculations on the size, shape and dimension dependent glass transition (Tg) and Kauzmann temperature (TK) are performed for silver (Ag) and tantalum (Ta) nanoparticles (NPs) of different shapes. The considered shapes are spherical, tetrahedral, octahedral and icosahedral accompanied with zero-, one- and two-dimensional geometries. Our results reveal that the Tg and TK strongly depend on the size of the nanoparticles. As the size of the NPs decreases, Tg and TK decrease. It is observed that both temperatures follow the trend as (icosahedral, D) > (spherical, D) > (octahedral, D) > (tetrahedral, D) for selected Ag and Ta nanoparticles. However, in terms of dimension, they show the d = 0 < d = 1 < d = 2 trend. The calculated values of glass transition and Kauzmann temperatures for both considered nanoparticles have good agreement with available molecular dynamics (MD) simulation and experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146 Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146
Zurück zum Zitat Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale J. Phys: Condens Matter 17:461 Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale J. Phys: Condens Matter 17:461
Zurück zum Zitat Ao ZM, Zheng WT, Jiang Q (2007) Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles. Nanotechnology 18:255706–255712 Ao ZM, Zheng WT, Jiang Q (2007) Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles. Nanotechnology 18:255706–255712
Zurück zum Zitat Attili A, Gallo P, Rovere M (2005) Inherent structures and Kauzmann temperature of confined liquids Phys. Rev E 71:031204 Attili A, Gallo P, Rovere M (2005) Inherent structures and Kauzmann temperature of confined liquids Phys. Rev E 71:031204
Zurück zum Zitat Baletto F, Ferrando R, Fortunelli A, Montalenti F, Mottet C (2002) Crossover among structural motifs in transition and noble-metal clusters. J Chem Phys 116:3856–3863 Baletto F, Ferrando R, Fortunelli A, Montalenti F, Mottet C (2002) Crossover among structural motifs in transition and noble-metal clusters. J Chem Phys 116:3856–3863
Zurück zum Zitat Bhatt P, Pratap A, Jha PK (2012) Study of size-dependent glass transition and Kauzmann temperatures of tin dioxide nanoparticles. J Therm Anal Calorim 110:535–538 Bhatt P, Pratap A, Jha PK (2012) Study of size-dependent glass transition and Kauzmann temperatures of tin dioxide nanoparticles. J Therm Anal Calorim 110:535–538
Zurück zum Zitat Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959 Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959
Zurück zum Zitat Coluzzi B, Parisi G, Verrocchio P (2000) Thermodynamical liquid-glass transition in a Lennard-Jones Binary Mixture. Phys Rev Lett 84:306–309 Coluzzi B, Parisi G, Verrocchio P (2000) Thermodynamical liquid-glass transition in a Lennard-Jones Binary Mixture. Phys Rev Lett 84:306–309
Zurück zum Zitat Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–267 Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–267
Zurück zum Zitat Guisbiers G (2010) Size-dependent materials properties toward a universal equation Nanoscale Res. Lett. 5:1132–1136 Guisbiers G (2010) Size-dependent materials properties toward a universal equation Nanoscale Res. Lett. 5:1132–1136
Zurück zum Zitat Gao W, Zhao M, Jiang Q (2007) A DFT study on electronic structures and catalysis of Ag12O6/Ag(111) for ethylene Epoxidation. J Phys Chem C 111:4042–4046 Gao W, Zhao M, Jiang Q (2007) A DFT study on electronic structures and catalysis of Ag12O6/Ag(111) for ethylene Epoxidation. J Phys Chem C 111:4042–4046
Zurück zum Zitat Gibbs JH, Di Marzio EA (1958) Nature of the glass transition and the glassy state. J Chem Phys 28:373–383 Gibbs JH, Di Marzio EA (1958) Nature of the glass transition and the glassy state. J Chem Phys 28:373–383
Zurück zum Zitat Guisbiers G, Kazan M, Van Overschelde O, Wautelet M, Pereira S (2008) Mechanical and thermal properties of metallic and semiconductive nanostructures. J Phys Chem C 112:4097–4103 Guisbiers G, Kazan M, Van Overschelde O, Wautelet M, Pereira S (2008) Mechanical and thermal properties of metallic and semiconductive nanostructures. J Phys Chem C 112:4097–4103
Zurück zum Zitat Guisbiers G, Wautelet M (2006) Size, shape and stress effects on the melting temperature of nano-polyhedral grains on a substrate. Nanotechnology 17:2008–2011 Guisbiers G, Wautelet M (2006) Size, shape and stress effects on the melting temperature of nano-polyhedral grains on a substrate. Nanotechnology 17:2008–2011
Zurück zum Zitat Jiang Q, Lang XY (2004) Glass transition of low-dimensional polystyrene Macromol. Rapid Commun 25:825 Jiang Q, Lang XY (2004) Glass transition of low-dimensional polystyrene Macromol. Rapid Commun 25:825
Zurück zum Zitat Jiang Q, Zhao M, Xu XY (1997) Kauzmann temperature of alloys obtained by different methods. Phil MagB 76:1–10 Jiang Q, Zhao M, Xu XY (1997) Kauzmann temperature of alloys obtained by different methods. Phil MagB 76:1–10
Zurück zum Zitat Kauzmann W (1948) The nature of the glassy state and the behaviour of liquids at low temperatures. Chem Rev 43:219–256 Kauzmann W (1948) The nature of the glassy state and the behaviour of liquids at low temperatures. Chem Rev 43:219–256
Zurück zum Zitat Khan MM, Nemati A, Rahman ZU, Shah UH, Asgar H, Haider W (2017) Recent advancements in bulk metallic glasses and their applications: a review. Critical Reviews In Solid State and Materials Sciences 43:233–268 Khan MM, Nemati A, Rahman ZU, Shah UH, Asgar H, Haider W (2017) Recent advancements in bulk metallic glasses and their applications: a review. Critical Reviews In Solid State and Materials Sciences 43:233–268
Zurück zum Zitat Klose G, Fecht HJ (1994) Vitrification close to the Kauzmann point of eutectic Au Pb Sb alloys Mater. Sci. Eng. A 180:77–80 Klose G, Fecht HJ (1994) Vitrification close to the Kauzmann point of eutectic Au Pb Sb alloys Mater. Sci. Eng. A 180:77–80
Zurück zum Zitat Krakoviack V (2005) Liquid-glass transition of a fluid confined in a disordered porous matrix: a mode-coupling theory. Phys Rev Lett 94:065703–065707 Krakoviack V (2005) Liquid-glass transition of a fluid confined in a disordered porous matrix: a mode-coupling theory. Phys Rev Lett 94:065703–065707
Zurück zum Zitat Kumar G, Desai A, Schroers J (2011) Bulk metallic glass: the smaller the better Adv. Mater. 23:461–476 Kumar G, Desai A, Schroers J (2011) Bulk metallic glass: the smaller the better Adv. Mater. 23:461–476
Zurück zum Zitat Li YZ, Sun YT, Lu Z, Li MZ, Bai HY, Wang WH (2017) Size effect on dynamics and glass transition in metallic liquids and glasses. J Chem Phys 146:224502 Li YZ, Sun YT, Lu Z, Li MZ, Bai HY, Wang WH (2017) Size effect on dynamics and glass transition in metallic liquids and glasses. J Chem Phys 146:224502
Zurück zum Zitat Lu HM, Li PY, Cao ZH, Meng XK (2009) Size-, Shape-, and Dimensionality-Dependent Melting Temperatures of Nanocrystals. J Phys Chem C 113:7598–7602 Lu HM, Li PY, Cao ZH, Meng XK (2009) Size-, Shape-, and Dimensionality-Dependent Melting Temperatures of Nanocrystals. J Phys Chem C 113:7598–7602
Zurück zum Zitat Luo J, Wang J, Bitzek E, Huang JY, Zhang H, Tong L, Yang Q, Li J, Mao SX (2016) Size-dependent brittle-to-ductile transition in silica glass nanofibers. Nano Lett 16:105–113 Luo J, Wang J, Bitzek E, Huang JY, Zhang H, Tong L, Yang Q, Li J, Mao SX (2016) Size-dependent brittle-to-ductile transition in silica glass nanofibers. Nano Lett 16:105–113
Zurück zum Zitat Mishra S, Jha PK, Pratap A (2012) Study of size-dependent glass transition and Kauzmann temperature of titanium dioxide nanoparticles. J Therm Anal Calorim 107:65–68 Mishra S, Jha PK, Pratap A (2012) Study of size-dependent glass transition and Kauzmann temperature of titanium dioxide nanoparticles. J Therm Anal Calorim 107:65–68
Zurück zum Zitat Morones J et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346 Morones J et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346
Zurück zum Zitat Nanda KK, Sahu SN, Behera SN (2002) Liquiddrop model for the size-dependent melting of lowdimensional systems, Phys. Rev. A 66, 013208 Nanda KK, Sahu SN, Behera SN (2002) Liquiddrop model for the size-dependent melting of lowdimensional systems, Phys. Rev. A 66, 013208
Zurück zum Zitat Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J Am Chem Soc 125:8340–8347 Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J Am Chem Soc 125:8340–8347
Zurück zum Zitat Jiang Q, Shi HX, Zhao M (1999) Melting thermodynamics of organic nanocrystals. J Chem Phys 111:5 Jiang Q, Shi HX, Zhao M (1999) Melting thermodynamics of organic nanocrystals. J Chem Phys 111:5
Zurück zum Zitat Kumar R, Kumar M (2012) Effect of size on cohesive energy, melting temperature and Debye temperature of nanomaterial. Indian J pure Appl. Phys. 50:329–334 Kumar R, Kumar M (2012) Effect of size on cohesive energy, melting temperature and Debye temperature of nanomaterial. Indian J pure Appl. Phys. 50:329–334
Zurück zum Zitat Bhatt S, Kumar M (2017) Effect of size and shape on melting and superheating of free standing and embedded nanoparticles. J Phys Chem Solids 106:112–117 Bhatt S, Kumar M (2017) Effect of size and shape on melting and superheating of free standing and embedded nanoparticles. J Phys Chem Solids 106:112–117
Zurück zum Zitat Safaei A, Shandiz M, Sanjabi A, Barber S, Z. H. (2008) Modeling the melting temperature of nanoparticles by an analytical approach. J Phys Chem C 112:99–155 Safaei A, Shandiz M, Sanjabi A, Barber S, Z. H. (2008) Modeling the melting temperature of nanoparticles by an analytical approach. J Phys Chem C 112:99–155
Zurück zum Zitat Saslow WS (1988) Scenario for the Vogel-Fulcher “law”. Phys Rev B 37:676–678 Saslow WS (1988) Scenario for the Vogel-Fulcher “law”. Phys Rev B 37:676–678
Zurück zum Zitat Sastry S (2001) The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409:164–167 Sastry S (2001) The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409:164–167
Zurück zum Zitat Sastry S, Debenedetti PG, Stillinger FH (1998) Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393:554–557 Sastry S, Debenedetti PG, Stillinger FH (1998) Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393:554–557
Zurück zum Zitat Scala A, Starr FW, Nave EL, Sciortino F, Stanley HE (2000) Configurational entropy and diffusivity of supercooled water. Nature 406:166–175 Scala A, Starr FW, Nave EL, Sciortino F, Stanley HE (2000) Configurational entropy and diffusivity of supercooled water. Nature 406:166–175
Zurück zum Zitat Seifert G (2004) Nanocluster magic. Nat Mater 3:77–78 Seifert G (2004) Nanocluster magic. Nat Mater 3:77–78
Zurück zum Zitat Stillinger FH et al (1999) J Phys Chem B 103:7390 Stillinger FH et al (1999) J Phys Chem B 103:7390
Zurück zum Zitat Sun J, He LB, Lo YC, Xu T, Bi HC, Sun L, Zhang Z, Mao SX, Li J (2014) Liquid-like pseudo-elasticity of sub-10-nm crystalline silver particles. Nat Mater 13:1007–1012 Sun J, He LB, Lo YC, Xu T, Bi HC, Sun L, Zhang Z, Mao SX, Li J (2014) Liquid-like pseudo-elasticity of sub-10-nm crystalline silver particles. Nat Mater 13:1007–1012
Zurück zum Zitat Tanaka H (2005) Two-order-parameter model of the liquid–glass transition. III. Universal patterns of relaxations in glass-forming liquids. J Non-Cryst Solids 351:3396–3413 Tanaka H (2005) Two-order-parameter model of the liquid–glass transition. III. Universal patterns of relaxations in glass-forming liquids. J Non-Cryst Solids 351:3396–3413
Zurück zum Zitat Qi WH (2005) Size effect on melting temperature of nanosolids. Physica B 368(2005):46–50 Qi WH (2005) Size effect on melting temperature of nanosolids. Physica B 368(2005):46–50
Zurück zum Zitat Wang Y et al (2004) Synthesis and phase structure of tantalum nanoparticles. Mater Lett 58:3017–3020 Wang Y et al (2004) Synthesis and phase structure of tantalum nanoparticles. Mater Lett 58:3017–3020
Zurück zum Zitat Yu HB, Luo Y, Samwer K (2013) Ultrastable metallic glass. Adv Mater 25:5904–5908 Yu HB, Luo Y, Samwer K (2013) Ultrastable metallic glass. Adv Mater 25:5904–5908
Zurück zum Zitat Yu HB et al (2015) Suppression of β relaxation in vapor-deposited ultrastable glasses. Phys Rev Lett 115:185501–185506 Yu HB et al (2015) Suppression of β relaxation in vapor-deposited ultrastable glasses. Phys Rev Lett 115:185501–185506
Zurück zum Zitat Zhang X et al (2018) Size and shape dependent melting temperature of metallic nanomaterials J. Phys: Condens Matter 31:7 Zhang X et al (2018) Size and shape dependent melting temperature of metallic nanomaterials J. Phys: Condens Matter 31:7
Zurück zum Zitat Zhong L, Wang J, Sheng H, Zhang Z, Mao SX (2014) Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512:177–180 Zhong L, Wang J, Sheng H, Zhang Z, Mao SX (2014) Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512:177–180
Metadaten
Titel
Influence of size, shape and dimension on glass transition and Kauzmann temperature of silver (Ag) and tantalum (Ta) nanoparticles
verfasst von
Chetna S. Tiwari
Arun Pratap
Prafulla K. Jha
Publikationsdatum
01.08.2020
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 8/2020
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-020-04955-y

Weitere Artikel der Ausgabe 8/2020

Journal of Nanoparticle Research 8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.