Skip to main content
Erschienen in: Integrating Materials and Manufacturing Innovation 2/2021

16.04.2021 | Technical Article

Integrated Computational Design of Three-Phase Mo–Si–B Alloy Turbine Blade for High-Temperature Aerospace Applications

verfasst von: Brett D. Ellis, Hasan Haider, Matthew W. Priddy, Anirban Patra

Erschienen in: Integrating Materials and Manufacturing Innovation | Ausgabe 2/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The efficiencies of jet turbine engines are limited in part by the high-temperature properties of Ni-based superalloys utilized within turbine blades. Although Mo–Si–B alloys exhibit promising high-temperature properties, traditional materials development approaches relying extensively upon costly trial-and-error experiments inhibit the adoption rate of new materials. The present research seeks to address this problem by developing and demonstrating a computational materials design framework for the design of Mo-Si-B alloys for gas turbine blade applications. The developed framework utilizes: (1) finite element simulations of 280 random microstructure instantiations to predict microstructure- and temperature-dependent yield strength and fracture toughness and their uncertainties; (2) analytical models to predict stresses due to turbine blade rotation; and (3) the inductive design exploration method (IDEM) to determine robust feasible domains of input and intermediate design variables. IDEM considers three input design variables (i.e., operating temperatures of 1273 K and 1473 K, volume fraction of the Molybdenum solid solution phase 0.45 ≤ vMoSS ≤ 0.75, and volume fraction of T2 intermetallic phase 0.125 ≤ vT2 ≤ 0.275) and three intermediate design variables (i.e., yield strength, fracture toughness, and density). Results indicate a maximum feasible temperature of approximately 1295 K at vMoSS and vT2 of approximately 0.45 and 0.18, respectively. This work is significant in that it demonstrates the design of Mo-Si-B alloys for high-temperature blades for aerospace applications, thus providing a means to increase efficiencies and reduce greenhouse gas emissions.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Jéhanno P, Böning M, Kestler H, Heilmaier M, Saage H, Krüger M (2008) Molybdenum alloys for high temperature applications in air. Powder Metall 51(2):99–102CrossRef Jéhanno P, Böning M, Kestler H, Heilmaier M, Saage H, Krüger M (2008) Molybdenum alloys for high temperature applications in air. Powder Metall 51(2):99–102CrossRef
3.
Zurück zum Zitat Lemberg JA, Ritchie RO (2012) Mo-Si-B alloys for ultrahigh-temperature structural applications. Adv Mater 24(26):3445–3480CrossRef Lemberg JA, Ritchie RO (2012) Mo-Si-B alloys for ultrahigh-temperature structural applications. Adv Mater 24(26):3445–3480CrossRef
4.
Zurück zum Zitat Mitra R (2006) Mechanical behaviour and oxidation resistance of structural silicides. Int Mater Rev 51(1):13–64CrossRef Mitra R (2006) Mechanical behaviour and oxidation resistance of structural silicides. Int Mater Rev 51(1):13–64CrossRef
10.
Zurück zum Zitat Middlemas MR, Cochran JK (2010) The microstructural engineering of Mo-Si-B alloys produced by reaction synthesis. JOM 62(10):20–24CrossRef Middlemas MR, Cochran JK (2010) The microstructural engineering of Mo-Si-B alloys produced by reaction synthesis. JOM 62(10):20–24CrossRef
13.
Zurück zum Zitat Sakidja R, Perepezko JH, Kim S, Sekido N (2008) Phase stability and structural defects in high-temperature Mo–Si–B alloys. Acta Mater 56(18):5223–5244CrossRef Sakidja R, Perepezko JH, Kim S, Sekido N (2008) Phase stability and structural defects in high-temperature Mo–Si–B alloys. Acta Mater 56(18):5223–5244CrossRef
16.
Zurück zum Zitat Jain P, Kumar KS (2010) Dissolved Si in Mo and its effects on the properties of Mo–Si–B alloys. Scripta Mater 62(1):1–4CrossRef Jain P, Kumar KS (2010) Dissolved Si in Mo and its effects on the properties of Mo–Si–B alloys. Scripta Mater 62(1):1–4CrossRef
17.
Zurück zum Zitat Sturm D, Heilmaier M, Schneibel JH, Jéhanno P, Skrotzki B, Saage H (2007) The influence of silicon on the strength and fracture toughness of molybdenum. Mater Sci Eng, A 463(1–2):107–114CrossRef Sturm D, Heilmaier M, Schneibel JH, Jéhanno P, Skrotzki B, Saage H (2007) The influence of silicon on the strength and fracture toughness of molybdenum. Mater Sci Eng, A 463(1–2):107–114CrossRef
18.
Zurück zum Zitat Zhang L, Pan K, Lin J (2013) Fracture toughness and fracture mechanisms in Mo5SiB2 at ambient to elevated temperatures. Intermetallics 38:49–54CrossRef Zhang L, Pan K, Lin J (2013) Fracture toughness and fracture mechanisms in Mo5SiB2 at ambient to elevated temperatures. Intermetallics 38:49–54CrossRef
19.
Zurück zum Zitat Krüger M et al (2008) Mechanically alloyed Mo–Si–B alloys with a continuous α-Mo matrix and improved mechanical properties. Intermetallics 16(7):933–941CrossRef Krüger M et al (2008) Mechanically alloyed Mo–Si–B alloys with a continuous α-Mo matrix and improved mechanical properties. Intermetallics 16(7):933–941CrossRef
20.
Zurück zum Zitat Middlemas MR, Cochran JK (2008) Dense, fine-grain Mo-Si-B alloys from nitride-based reactions. JOM 60(7):19–24CrossRef Middlemas MR, Cochran JK (2008) Dense, fine-grain Mo-Si-B alloys from nitride-based reactions. JOM 60(7):19–24CrossRef
21.
Zurück zum Zitat Chollacoop N, Alur AP, Kumar KS (2007) Microstructural simulation of three-point bending test with Mo-Si-B alloy at high temperature: sources of strain field localization. J Solid Mech Mater Eng 1(8):998–1004CrossRef Chollacoop N, Alur AP, Kumar KS (2007) Microstructural simulation of three-point bending test with Mo-Si-B alloy at high temperature: sources of strain field localization. J Solid Mech Mater Eng 1(8):998–1004CrossRef
22.
Zurück zum Zitat Biragoni PG, Heilmaier M (2007) FEM-simulation of real and artificial microstructures of Mo-Si-B Alloys for elastic properties and comparison with analytical methods. Adv Eng Mater 9(10):882–887CrossRef Biragoni PG, Heilmaier M (2007) FEM-simulation of real and artificial microstructures of Mo-Si-B Alloys for elastic properties and comparison with analytical methods. Adv Eng Mater 9(10):882–887CrossRef
25.
Zurück zum Zitat Brindley KA, Neu RW (2019) Crystal viscoplasticity model of molybdenum including the influence of silicon in solid solution. Mater Perform Char 8(1):272–287 Brindley KA, Neu RW (2019) Crystal viscoplasticity model of molybdenum including the influence of silicon in solid solution. Mater Perform Char 8(1):272–287
26.
Zurück zum Zitat McDowell DL, Panchal J, Choi H-J, Seepersad C, Allen J, Mistree F (2009) Integrated design of multiscale, multifunctional materials and products. Butterworth-Heinemann, Burlington McDowell DL, Panchal J, Choi H-J, Seepersad C, Allen J, Mistree F (2009) Integrated design of multiscale, multifunctional materials and products. Butterworth-Heinemann, Burlington
31.
Zurück zum Zitat Choi HJ, Allen JK, Rosen D, McDowell DL, Mistree F (2005) An inductive design exploration method for the integrated design of multi-scale materials and products. In: International design engineering technical conferences and computers and information in engineering conference, vol 4739, pp 859–870. https://doi.org/10.1115/DETC2005-85335 Choi HJ, Allen JK, Rosen D, McDowell DL, Mistree F (2005) An inductive design exploration method for the integrated design of multi-scale materials and products. In: International design engineering technical conferences and computers and information in engineering conference, vol 4739, pp 859–870. https://​doi.​org/​10.​1115/​DETC2005-85335
32.
Zurück zum Zitat Choi H-J, Mcdowell DL, Allen JK, Mistree F (2008) An inductive design exploration method for hierarchical systems design under uncertainty. Eng Optim 40(4):287–307CrossRef Choi H-J, Mcdowell DL, Allen JK, Mistree F (2008) An inductive design exploration method for hierarchical systems design under uncertainty. Eng Optim 40(4):287–307CrossRef
33.
Zurück zum Zitat Middlemas MR (2009) Fabrication, strength and oxidation of molybdenum-silicon-boron alloys from reaction synthesis. Georgia Institute of Technology, Atlanta Middlemas MR (2009) Fabrication, strength and oxidation of molybdenum-silicon-boron alloys from reaction synthesis. Georgia Institute of Technology, Atlanta
34.
Zurück zum Zitat Trelis. American Fork (UT): csimsoft, 2018. Trelis. American Fork (UT): csimsoft, 2018.
38.
Zurück zum Zitat Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. In: Progress in materials science, vol 19, p 1 Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. In: Progress in materials science, vol 19, p 1
41.
Zurück zum Zitat Choe H, Chen D, Schneibel JH, Ritchie RO (2001) Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at.%) intermetallic. Intermetallics 9(4):319–329CrossRef Choe H, Chen D, Schneibel JH, Ritchie RO (2001) Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at.%) intermetallic. Intermetallics 9(4):319–329CrossRef
43.
Zurück zum Zitat Lemberg JA, Middlemas MR, Weingärtner T, Gludovatz B, Cochran JK, Ritchie RO (2012) On the fracture toughness of fine-grained Mo-3Si-1B (wt.%) alloys at ambient to elevated (1300°C) temperatures. Intermetallics 20(1):141–154CrossRef Lemberg JA, Middlemas MR, Weingärtner T, Gludovatz B, Cochran JK, Ritchie RO (2012) On the fracture toughness of fine-grained Mo-3Si-1B (wt.%) alloys at ambient to elevated (1300°C) temperatures. Intermetallics 20(1):141–154CrossRef
47.
Zurück zum Zitat Tietz TE, Wilson JW (1965) Behavior and properties of refractory metals. Stanford University Press, Stanford Tietz TE, Wilson JW (1965) Behavior and properties of refractory metals. Stanford University Press, Stanford
49.
Zurück zum Zitat Pilkey WD (1997) Peterson’s stress concentration factors, 2nd edn. Wiley, New YorkCrossRef Pilkey WD (1997) Peterson’s stress concentration factors, 2nd edn. Wiley, New YorkCrossRef
50.
Zurück zum Zitat Jain P, Kumar KS (2010) Tensile creep of Mo–Si–B alloys. Acta Mater 58(6):2124–2142CrossRef Jain P, Kumar KS (2010) Tensile creep of Mo–Si–B alloys. Acta Mater 58(6):2124–2142CrossRef
51.
Zurück zum Zitat Anderson TL (2005) Fracture mechanics: fundamentals and applications. CRC Press, Boca RatonCrossRef Anderson TL (2005) Fracture mechanics: fundamentals and applications. CRC Press, Boca RatonCrossRef
52.
Zurück zum Zitat LLC Minitab, Minitab Statistical Software. 2019 LLC Minitab, Minitab Statistical Software. 2019
Metadaten
Titel
Integrated Computational Design of Three-Phase Mo–Si–B Alloy Turbine Blade for High-Temperature Aerospace Applications
verfasst von
Brett D. Ellis
Hasan Haider
Matthew W. Priddy
Anirban Patra
Publikationsdatum
16.04.2021
Verlag
Springer International Publishing
Erschienen in
Integrating Materials and Manufacturing Innovation / Ausgabe 2/2021
Print ISSN: 2193-9764
Elektronische ISSN: 2193-9772
DOI
https://doi.org/10.1007/s40192-021-00207-6

Weitere Artikel der Ausgabe 2/2021

Integrating Materials and Manufacturing Innovation 2/2021 Zur Ausgabe

Thematic Section: Metal Additive Manufacturing Modeling Challenge Series 2020

AFRL Additive Manufacturing Modeling Challenge Series: Overview

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.