Skip to main content
Erschienen in: Evolutionary Intelligence 4/2021

13.05.2020 | Research Paper

Intelligent environment for advanced brain imaging: multi-agent system for an automated Alzheimer diagnosis

verfasst von: Hanane Allioui, Mohamed Sadgal, Aziz Elfazziki

Erschienen in: Evolutionary Intelligence | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over decades Alzheimer’s disease (AD) researches presented increasing challenges. However, various methods were proposed to detect AD including image processing. This paper presents a concrete solution to diagnose AD based on a multi-agent system (MAS). This approach highlights the importance of the cooperation paradigm within a robust system, in which all agents cooperate to accomplish the segmentation tasks. The exchanges between agents remain an essential part of the segmentation process. The original contribution of this paper is twofold: (1) To present an agent-based segmentation methodology by highlighting the main characteristics, advantages, and disadvantages of MAS. (2) To provide a usable solution by facilitating the detection of AD while taking into account both the expertise and the requirements of specialists in the application domain. Ensuring a cooperative segmentation using the multi-agent system offers a strong point in terms of system stability as well as clarity of the process for physicians. For this, several tests have been carried out to prove the effectiveness of our work. The results ensure that the performance indices in our proposed method were higher.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Feigin L et al (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 161(1):877–897MathSciNetCrossRef Feigin L et al (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 161(1):877–897MathSciNetCrossRef
2.
Zurück zum Zitat Jenna M et al (2015) Clearance systems in the brain—implications for Alzheimer disease. PMC Nat Rev Neurol 11(8):457–470CrossRef Jenna M et al (2015) Clearance systems in the brain—implications for Alzheimer disease. PMC Nat Rev Neurol 11(8):457–470CrossRef
3.
Zurück zum Zitat Thomas DB (2018) Alzheimer disease overview. GeneReviews. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) Source gene reviews. University of Washington, Seattle, WA Thomas DB (2018) Alzheimer disease overview. GeneReviews. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) Source gene reviews. University of Washington, Seattle, WA
4.
Zurück zum Zitat Dubois B, Feldman HH, Jacova C, Hampel H et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629CrossRef Dubois B, Feldman HH, Jacova C, Hampel H et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629CrossRef
5.
Zurück zum Zitat Gabelle A, Schraen S, Gutierrez LA et al (2015) Plasma β-amyloid 40 levels are positively associated with mortality risks in the elderly. Alzheimer’s Dement 11:672–680CrossRef Gabelle A, Schraen S, Gutierrez LA et al (2015) Plasma β-amyloid 40 levels are positively associated with mortality risks in the elderly. Alzheimer’s Dement 11:672–680CrossRef
6.
Zurück zum Zitat Sutphen CL, Jasielec MS, Shah AR et al (2015) Longitudinal cerebrospinal fluid biomarker changes in preclinical Alzheimer disease during middle age. JAMA Neurol 72:1029–1042CrossRef Sutphen CL, Jasielec MS, Shah AR et al (2015) Longitudinal cerebrospinal fluid biomarker changes in preclinical Alzheimer disease during middle age. JAMA Neurol 72:1029–1042CrossRef
7.
Zurück zum Zitat Mattsson N, Smith R, Strandberg O et al (2018) Comparing 18F-AV-1451 with CSF t-tau and p-tau for diagnosis of Alzheimer disease. Neurology 90:e388–e395CrossRef Mattsson N, Smith R, Strandberg O et al (2018) Comparing 18F-AV-1451 with CSF t-tau and p-tau for diagnosis of Alzheimer disease. Neurology 90:e388–e395CrossRef
8.
Zurück zum Zitat Liang W et al (2012) Alzheimer’s disease family history impacts resting state functional connectivity. Ann Neurol 72(4):571–577CrossRef Liang W et al (2012) Alzheimer’s disease family history impacts resting state functional connectivity. Ann Neurol 72(4):571–577CrossRef
9.
Zurück zum Zitat Mueller SG, Weiner MW et al (2005) Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s Assoc 1(1):55–66CrossRef Mueller SG, Weiner MW et al (2005) Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s Assoc 1(1):55–66CrossRef
10.
Zurück zum Zitat Yudong Z et al (2014) Classification of Alzheimer disease based on structural magnetic resonance imaging by Kernel support vector machine decision tree. Prog Electromagn Res 144:171–184CrossRef Yudong Z et al (2014) Classification of Alzheimer disease based on structural magnetic resonance imaging by Kernel support vector machine decision tree. Prog Electromagn Res 144:171–184CrossRef
11.
Zurück zum Zitat Drweesh Z, Al-Bakry A (2019) Medical diagnosis advisor system: a survey. Int J Adv Res Comput Eng Technol (IJARCET) 8(1). ISSN: 2278 – 1323 Drweesh Z, Al-Bakry A (2019) Medical diagnosis advisor system: a survey. Int J Adv Res Comput Eng Technol (IJARCET) 8(1). ISSN: 2278 – 1323
13.
Zurück zum Zitat Yuan DL, Dong HJ, Tian XJ (2012) Gear surface defects measurement techniques based in image processing. J Dalian Jiaotong Univ 33(1):53–55 Yuan DL, Dong HJ, Tian XJ (2012) Gear surface defects measurement techniques based in image processing. J Dalian Jiaotong Univ 33(1):53–55
14.
Zurück zum Zitat Eman A et al (2015) Brain tumor segmentation based on a hybrid clustering technique. Egypt Inf J 16(1):71–81 Eman A et al (2015) Brain tumor segmentation based on a hybrid clustering technique. Egypt Inf J 16(1):71–81
15.
Zurück zum Zitat Chunsheng Z, Xiaoping L, Bing Z, Zhijian L (2017) Quantitative analysis of multi-components by single marker a rational method for the internal quality of Chinese herbal medicine. Integr Med Res 6(1):1–11CrossRef Chunsheng Z, Xiaoping L, Bing Z, Zhijian L (2017) Quantitative analysis of multi-components by single marker a rational method for the internal quality of Chinese herbal medicine. Integr Med Res 6(1):1–11CrossRef
16.
Zurück zum Zitat Saurabh G et al (2014) Indoor scene understanding with RGB-D images: bottom-up segmentation, object detection, and semantic segmentation. Int J Comput Vis 112(2):133–149MathSciNet Saurabh G et al (2014) Indoor scene understanding with RGB-D images: bottom-up segmentation, object detection, and semantic segmentation. Int J Comput Vis 112(2):133–149MathSciNet
17.
Zurück zum Zitat Xiaopeng Y, Jae D et al (2018) Segmentation of liver and vessels from CT images and classification of liver segments for preoperative liver surgical planning in living donor liver transplantation. Comput Methods Progr Biomed 158:41–52CrossRef Xiaopeng Y, Jae D et al (2018) Segmentation of liver and vessels from CT images and classification of liver segments for preoperative liver surgical planning in living donor liver transplantation. Comput Methods Progr Biomed 158:41–52CrossRef
18.
Zurück zum Zitat Abar S et al (2017) Agent-based modelling and simulation tools: a review of the state-of-art software. Comput Sci Rev 24:13–33CrossRef Abar S et al (2017) Agent-based modelling and simulation tools: a review of the state-of-art software. Comput Sci Rev 24:13–33CrossRef
19.
Zurück zum Zitat Li Songze et al (2017) Coding for distributed fog computing. IEEE Commun Mag 55(4):34–40CrossRef Li Songze et al (2017) Coding for distributed fog computing. IEEE Commun Mag 55(4):34–40CrossRef
20.
Zurück zum Zitat Jennings NR, Faratin P, Lomuscio AR, Parsons S, Wooldridge MJ, Sierra C (2001) Automated negotiation: prospects methods and challenges. Group Decis Negot 10(2):199–215CrossRef Jennings NR, Faratin P, Lomuscio AR, Parsons S, Wooldridge MJ, Sierra C (2001) Automated negotiation: prospects methods and challenges. Group Decis Negot 10(2):199–215CrossRef
22.
Zurück zum Zitat Deepika B et al (2018) Comparative analysis of various machine learning algorithms for detecting dementia. Proc Comput Sci 132:1497–1502CrossRef Deepika B et al (2018) Comparative analysis of various machine learning algorithms for detecting dementia. Proc Comput Sci 132:1497–1502CrossRef
23.
Zurück zum Zitat Itani S et al (2019) Specifics of medical data mining for diagnosis aid: a survey. Expert Syst Appl 118:300–314CrossRef Itani S et al (2019) Specifics of medical data mining for diagnosis aid: a survey. Expert Syst Appl 118:300–314CrossRef
24.
Zurück zum Zitat Brian P, Stephen MS, David NK, Mark J (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3):907–922CrossRef Brian P, Stephen MS, David NK, Mark J (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3):907–922CrossRef
25.
Zurück zum Zitat Shi J, Malik J (2000) Normalized cut and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRef Shi J, Malik J (2000) Normalized cut and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRef
26.
Zurück zum Zitat Cocquerez JP, Syvie P (1995) Analysis of images: filtering and segmentation, physics education. Elsevier-Masson. ISBN-13: 978-2225849237 Cocquerez JP, Syvie P (1995) Analysis of images: filtering and segmentation, physics education. Elsevier-Masson. ISBN-13: 978-2225849237
27.
Zurück zum Zitat Zu YS, Guang HY, Jing ZL (2002) Automated histogram-based brain segmentation in T1-weighted three-dimensional magnetic resonance head images. NeuroImage 17(3):1587–1598CrossRef Zu YS, Guang HY, Jing ZL (2002) Automated histogram-based brain segmentation in T1-weighted three-dimensional magnetic resonance head images. NeuroImage 17(3):1587–1598CrossRef
30.
Zurück zum Zitat Kanmani P, Marikkannu P (2018) MRI brain images classification: a multi-level threshold based region optimization technique. J Med Syst 42:62CrossRef Kanmani P, Marikkannu P (2018) MRI brain images classification: a multi-level threshold based region optimization technique. J Med Syst 42:62CrossRef
32.
Zurück zum Zitat Manasa N, Mounica G, Tejaswi BD (2016) Brain tumor detection based on canny edge detection algorithm and it’s area calculation. Brain. 5:10–13 Manasa N, Mounica G, Tejaswi BD (2016) Brain tumor detection based on canny edge detection algorithm and it’s area calculation. Brain. 5:10–13
34.
Zurück zum Zitat Zhang H, Wu P et al (2017) Data-driven identification of intensity normalization region based on longitudinal coherency of 18F-FDG metabolism in the healthy brain. NeuroImage 146:589–599CrossRef Zhang H, Wu P et al (2017) Data-driven identification of intensity normalization region based on longitudinal coherency of 18F-FDG metabolism in the healthy brain. NeuroImage 146:589–599CrossRef
35.
Zurück zum Zitat Jakobsen E, Liem F et al (2018) Automated individual-level parcellation of Broca’s region based on functional connectivity. NeuroImage 170:41–53CrossRef Jakobsen E, Liem F et al (2018) Automated individual-level parcellation of Broca’s region based on functional connectivity. NeuroImage 170:41–53CrossRef
36.
Zurück zum Zitat Kalavathi P, Priya T (2015) MRI brain tissue segmentation using AKM and FFCM clustering techniques. In: Proceedings of national conference on recent advances in computer science and application, Bonfring Publications, pp 113–118 Kalavathi P, Priya T (2015) MRI brain tissue segmentation using AKM and FFCM clustering techniques. In: Proceedings of national conference on recent advances in computer science and application, Bonfring Publications, pp 113–118
37.
Zurück zum Zitat Ryali S, Chen T, Padmanabhan A, Cai W, Menon V (2015) Development and validation of consensus clustering-based framework for brain segmentation using resting fMRI. J Neurosci Methods 240:128–140CrossRef Ryali S, Chen T, Padmanabhan A, Cai W, Menon V (2015) Development and validation of consensus clustering-based framework for brain segmentation using resting fMRI. J Neurosci Methods 240:128–140CrossRef
38.
Zurück zum Zitat Panda A, Kanti T, Vishnu M, Phaniharam G (2018) Automated brain tumor detection using discriminative clustering based MRI segmentation. Smart Innov Commun Comput Sci Adv Intell Syst Comput 851:117–126 Panda A, Kanti T, Vishnu M, Phaniharam G (2018) Automated brain tumor detection using discriminative clustering based MRI segmentation. Smart Innov Commun Comput Sci Adv Intell Syst Comput 851:117–126
39.
Zurück zum Zitat Bede P, Parameswaran ML et al (2017) Virtual brain biopsies in amyotrophic lateral sclerosis: diagnostic classification based on in vivo pathological patterns. NeuroImage Clin 15:653–658CrossRef Bede P, Parameswaran ML et al (2017) Virtual brain biopsies in amyotrophic lateral sclerosis: diagnostic classification based on in vivo pathological patterns. NeuroImage Clin 15:653–658CrossRef
40.
Zurück zum Zitat Arai T, Ogata H, Suzuki T (1989) Collision avoidance among multiple robots using virtual impedance. In: IEEE/RSJ international workshop on intelligent robots and systems '. (IROS '89). The autonomous mobile robots and its applications, pp 479–485. https://doi.org/10.1109/IROS.1989.637947 Arai T, Ogata H, Suzuki T (1989) Collision avoidance among multiple robots using virtual impedance. In: IEEE/RSJ international workshop on intelligent robots and systems '. (IROS '89). The autonomous mobile robots and its applications, pp 479–485. https://​doi.​org/​10.​1109/​IROS.​1989.​637947
41.
Zurück zum Zitat Li Z, Liu J (2016) A multi-agent genetic algorithm for community detection in complex networks. Phys A 449:336–347CrossRef Li Z, Liu J (2016) A multi-agent genetic algorithm for community detection in complex networks. Phys A 449:336–347CrossRef
42.
Zurück zum Zitat Ding W, Lou C, Qiu J, Zhao Z, Zhou Q, Liang M, Ji Z, Yang S, Xing S (2016) Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice. Nanomed Nanotechnol Biol Med 12:235–244CrossRef Ding W, Lou C, Qiu J, Zhao Z, Zhou Q, Liang M, Ji Z, Yang S, Xing S (2016) Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice. Nanomed Nanotechnol Biol Med 12:235–244CrossRef
43.
Zurück zum Zitat Liu J, Tang YY (1999) Adaptative image segmentation with distributed behavior based agents. IEEE Trans Pattern Anal Mach Intell 6:544–551 Liu J, Tang YY (1999) Adaptative image segmentation with distributed behavior based agents. IEEE Trans Pattern Anal Mach Intell 6:544–551
44.
Zurück zum Zitat Bovenkamp EGP, Dijkstra J, Bosch JB, Reiber JHC (2004) Multi-agent segmentation of IVUS images. Pattern Recogn 37:647–663MATHCrossRef Bovenkamp EGP, Dijkstra J, Bosch JB, Reiber JHC (2004) Multi-agent segmentation of IVUS images. Pattern Recogn 37:647–663MATHCrossRef
45.
Zurück zum Zitat Sierra C, Fabregues A (2014) HANA: a human-aware negotiation architecture. Decis Support Syst 60:18–28CrossRef Sierra C, Fabregues A (2014) HANA: a human-aware negotiation architecture. Decis Support Syst 60:18–28CrossRef
46.
Zurück zum Zitat Kardas G et al (2018) Domain-specific modelling language for belief–desire–intention software agents. IET Softw 12(4):356–364CrossRef Kardas G et al (2018) Domain-specific modelling language for belief–desire–intention software agents. IET Softw 12(4):356–364CrossRef
47.
Zurück zum Zitat Germond L, Dojat M, Taylor C, Garbay C (2000) A cooperative framework for segmentation of MRI brain scans. Artif Intell Med 20(1):77–93CrossRef Germond L, Dojat M, Taylor C, Garbay C (2000) A cooperative framework for segmentation of MRI brain scans. Artif Intell Med 20(1):77–93CrossRef
49.
Zurück zum Zitat Pereira C, Veiga D, Mahdjou J, Guessoum Z, Gonçalves L, Ferreira M, Monteiro J (2014) Using a multi-agent system approach for microaneurysm detection in fundus images. Artif Intell Med 60(3):179–188CrossRef Pereira C, Veiga D, Mahdjou J, Guessoum Z, Gonçalves L, Ferreira M, Monteiro J (2014) Using a multi-agent system approach for microaneurysm detection in fundus images. Artif Intell Med 60(3):179–188CrossRef
50.
Zurück zum Zitat Allioui H, Sadgal M, Elfazziki A (2019) A robust multi-agent negotiation for advanced image segmentation: design and implementation. Inteligencia Artificial 22(64):102–122CrossRef Allioui H, Sadgal M, Elfazziki A (2019) A robust multi-agent negotiation for advanced image segmentation: design and implementation. Inteligencia Artificial 22(64):102–122CrossRef
51.
Zurück zum Zitat Martinez-Murcia FJ, Gorriz JM, Ranmirez J, Ortiz A (2016) A spherical brain mapping of MR images for the detection of Alzheimer’s disease. Curr Alzheimer Res 13(5):575–588CrossRef Martinez-Murcia FJ, Gorriz JM, Ranmirez J, Ortiz A (2016) A spherical brain mapping of MR images for the detection of Alzheimer’s disease. Curr Alzheimer Res 13(5):575–588CrossRef
52.
Zurück zum Zitat Anitha R et al (2016) A segmentation technique to detect the Alzheimer’s disease using image processing. In: International conference on electrical, electronics and optimization techniques, pp 3800–3803 Anitha R et al (2016) A segmentation technique to detect the Alzheimer’s disease using image processing. In: International conference on electrical, electronics and optimization techniques, pp 3800–3803
53.
Zurück zum Zitat Kalavathi P, Christy AA, Priya T (2017) Detection of Alzheimer disease in MR brain images using FFCM method. Computational methods, communication techniques and informatics, ISBN: 978-81-933316-1-3 Kalavathi P, Christy AA, Priya T (2017) Detection of Alzheimer disease in MR brain images using FFCM method. Computational methods, communication techniques and informatics, ISBN: 978-81-933316-1-3
54.
Zurück zum Zitat Cai W, Chen S, Zhang D (2017) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40(3):825–838MATHCrossRef Cai W, Chen S, Zhang D (2017) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40(3):825–838MATHCrossRef
55.
Zurück zum Zitat Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57CrossRef Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57CrossRef
58.
Zurück zum Zitat Shira K (2012) Amygdata in Alzheimer‘s disease. InTechOpen, London Shira K (2012) Amygdata in Alzheimer‘s disease. InTechOpen, London
59.
Zurück zum Zitat Ito M, Sato K, Fukumi M, Namura I (2011) Brain tissues segmentation for diagnosis of Alzheimer—type dementia. In: IEEE nuclear science symposium conference record, pp 3847–3849 Ito M, Sato K, Fukumi M, Namura I (2011) Brain tissues segmentation for diagnosis of Alzheimer—type dementia. In: IEEE nuclear science symposium conference record, pp 3847–3849
60.
Zurück zum Zitat Plataniotis K, Venetsanopoulos A (2000) Color image processing and applications. CRC Press, Berlin, pp 1–355CrossRef Plataniotis K, Venetsanopoulos A (2000) Color image processing and applications. CRC Press, Berlin, pp 1–355CrossRef
61.
Zurück zum Zitat Fei Z, Guo J (2011) A new hybrid image segmentation method for fingerprint identification. Proc IEEE Int Conf Comput Sci Autom Eng Shanghai China 10–12:382–386 Fei Z, Guo J (2011) A new hybrid image segmentation method for fingerprint identification. Proc IEEE Int Conf Comput Sci Autom Eng Shanghai China 10–12:382–386
62.
Zurück zum Zitat Zhou Z, Wei S, Zhang X, Zhao X (2007) Remote sensing image segmentation based on self-organizing map at multiple-scale. In: Proceedings of SPIE geoinformatics: remotely sensed data and information 6752, Nanjing, China, pp 67520E.1–67520E.9 Zhou Z, Wei S, Zhang X, Zhao X (2007) Remote sensing image segmentation based on self-organizing map at multiple-scale. In: Proceedings of SPIE geoinformatics: remotely sensed data and information 6752, Nanjing, China, pp 67520E.1–67520E.9
64.
Zurück zum Zitat Priya T, Kalavathi P (2018) Histogram based multimodal minimum cross entropy thresholding method for magnetic resonance brain tissue segmentation. J Comput Theor Nanosci 15(6–7):2430–2436CrossRef Priya T, Kalavathi P (2018) Histogram based multimodal minimum cross entropy thresholding method for magnetic resonance brain tissue segmentation. J Comput Theor Nanosci 15(6–7):2430–2436CrossRef
65.
Zurück zum Zitat Pellegrini E, Ballerini L et al (2018) Machine learning of neuroimaging to diagnose cognitive impairment and dementia: a systematic review and comparative analysis. arXiv:1804.01961[q-bio.NC] Pellegrini E, Ballerini L et al (2018) Machine learning of neuroimaging to diagnose cognitive impairment and dementia: a systematic review and comparative analysis. arXiv:​1804.​01961[q-bio.​NC]
72.
Zurück zum Zitat Fisher P (1997) The pixel: a snare and a delusion. Int J Remote Sens 18(15):679–685CrossRef Fisher P (1997) The pixel: a snare and a delusion. Int J Remote Sens 18(15):679–685CrossRef
73.
Zurück zum Zitat Clinton N, Holt A, Scarborough J, Yan L, Gong P (2010) Accuracy assessment measures for object-based image segmentation goodness. Photogramm Eng Remote Sens 76(3):289–299CrossRef Clinton N, Holt A, Scarborough J, Yan L, Gong P (2010) Accuracy assessment measures for object-based image segmentation goodness. Photogramm Eng Remote Sens 76(3):289–299CrossRef
74.
Zurück zum Zitat Schoemaker D, Buss C, Head K et al (2016) Hippocampus and amygdala volumes from magnetic resonance images in children: assessing accuracy of FreeSurfer and FSL against manual segmentation. NeuroImage 129:1–14CrossRef Schoemaker D, Buss C, Head K et al (2016) Hippocampus and amygdala volumes from magnetic resonance images in children: assessing accuracy of FreeSurfer and FSL against manual segmentation. NeuroImage 129:1–14CrossRef
75.
Zurück zum Zitat Schneider E, Nevitt M, McCulloch C, Cicuttini FM, Duryea J, Eckstein F, Tamez-Pena (2012) Equivalence and precision of knee cartilage morphometry between different segmentation teams, cartilage regions, and MR acquisitions. Osteoarthr Cartil 20(8):869–879CrossRef Schneider E, Nevitt M, McCulloch C, Cicuttini FM, Duryea J, Eckstein F, Tamez-Pena (2012) Equivalence and precision of knee cartilage morphometry between different segmentation teams, cartilage regions, and MR acquisitions. Osteoarthr Cartil 20(8):869–879CrossRef
77.
Zurück zum Zitat Wafa M, Zagrouba E (2009) Tumor extraction from multimodal MRI. Comput Recognit Syst. 3:415–422CrossRef Wafa M, Zagrouba E (2009) Tumor extraction from multimodal MRI. Comput Recognit Syst. 3:415–422CrossRef
78.
Zurück zum Zitat Fletcher LM, Halla LO, Goldgofa DB, Murtaghb FR (2001) Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 21:43–63CrossRef Fletcher LM, Halla LO, Goldgofa DB, Murtaghb FR (2001) Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 21:43–63CrossRef
79.
Zurück zum Zitat Aslam A, Khan E, Beg MMS (2015) Improved edge detection algorithm for brain tumor segmentation. Proc Comput Sci 58:430–437CrossRef Aslam A, Khan E, Beg MMS (2015) Improved edge detection algorithm for brain tumor segmentation. Proc Comput Sci 58:430–437CrossRef
80.
Zurück zum Zitat Zhang X, Li X, Feng Y (2015) A medical image segmentation algorithm based on bi-directional region growing. Optik 126(20):2398–2404CrossRef Zhang X, Li X, Feng Y (2015) A medical image segmentation algorithm based on bi-directional region growing. Optik 126(20):2398–2404CrossRef
Metadaten
Titel
Intelligent environment for advanced brain imaging: multi-agent system for an automated Alzheimer diagnosis
verfasst von
Hanane Allioui
Mohamed Sadgal
Aziz Elfazziki
Publikationsdatum
13.05.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Evolutionary Intelligence / Ausgabe 4/2021
Print ISSN: 1864-5909
Elektronische ISSN: 1864-5917
DOI
https://doi.org/10.1007/s12065-020-00420-w

Weitere Artikel der Ausgabe 4/2021

Evolutionary Intelligence 4/2021 Zur Ausgabe

Premium Partner