Skip to main content
Erschienen in: Journal of Science Education and Technology 5/2016

19.05.2016

Inter-level Scaffolding and Sequences of Representational Activities in Teaching a Chemical System with Graphical Simulations

verfasst von: Na Li, John B. Black

Erschienen in: Journal of Science Education and Technology | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences of representational activities produced different student learning outcomes in learning a chemistry topic. A sample of 129 seventh graders participated in this study. In a simulation-based environment, participants completed three representational activities to learn several ideal gas law concepts. We conducted a 2 × 3 factorial design experiment. We compared two scaffolding conditions: (1) the inter-level scaffolding condition in which participants received inter-level questions and experienced the dynamic link function in the simulation-based environment and (2) the intra-level scaffolding condition in which participants received intra-level questions and did not experience the dynamic link function. We also compared three different sequences of representational activities: macro-symbolic-micro, micro-symbolic-macro and symbolic-micro-macro. For the scaffolding variable, we found that the inter-level scaffolding condition produced significantly better performance in both knowledge comprehension and application, compared to the intra-level scaffolding condition. For the sequence variable, we found that the macro-symbolic-micro sequence produced significantly better knowledge comprehension performance than the other two sequences; however, it did not benefit knowledge application performance. There was a trend that the treatment group who experienced inter-level scaffolding and the micro-symbolic-macro sequence achieved the best knowledge application performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
This simulation-based environment includes three phenomenon simulations that illustrate three gas phenomena corresponding to the three laws (the Gay-Lussac's law, the Boyle’s law and the Charles’ law) and one “container of molecules” simulation in which students can manipulate to learn the relationships among temperature, pressure and volume variables as well as view molecular behaviors under different conditions. In this study, students were expected to learn the temperature–pressure relationship when volume stayed constant (the Gay-Lussac's law); thus, they only learned one phenomenon simulation (i.e., “aerosol can” simulation) and the volume variable was set constant in the “container of molecules” simulation.
 
Literatur
Zurück zum Zitat Ainsworth S (2006) DeFT: A conceptual framework for considering learning with multiple representations. Learn Instr 16(3):183–198CrossRef Ainsworth S (2006) DeFT: A conceptual framework for considering learning with multiple representations. Learn Instr 16(3):183–198CrossRef
Zurück zum Zitat Ainsworth S (2008) The educational value of multiple-representations when learning complex scientific concepts. In: Gilbert J, Reiner M, Nakhleh M (eds) Visualization: theory and practice in science education, vol 3. Springer, Dordrecht, pp 191–208CrossRef Ainsworth S (2008) The educational value of multiple-representations when learning complex scientific concepts. In: Gilbert J, Reiner M, Nakhleh M (eds) Visualization: theory and practice in science education, vol 3. Springer, Dordrecht, pp 191–208CrossRef
Zurück zum Zitat Anderson LW (ed), Krathwohl DR (ed), Airasian PW, Cruikshank KA, Mayer RE, Pintrich PR, Raths J, Wittrock MC (2001) A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives (complete edition). Longman, New York Anderson LW (ed), Krathwohl DR (ed), Airasian PW, Cruikshank KA, Mayer RE, Pintrich PR, Raths J, Wittrock MC (2001) A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives (complete edition). Longman, New York
Zurück zum Zitat Ardac D, Akaygun S (2004) Effectiveness of multimedia-based instruction that emphasizes molecular representations on students’ understanding of chemical change. J Res Sci Teach 41(4):317–337CrossRef Ardac D, Akaygun S (2004) Effectiveness of multimedia-based instruction that emphasizes molecular representations on students’ understanding of chemical change. J Res Sci Teach 41(4):317–337CrossRef
Zurück zum Zitat Ayas A, Özmen H, Çalık M (2010) Students’ conceptions of the particulate nature of matter at secondary and tertiary level. Int J Sci Educ 8(1):165–184 Ayas A, Özmen H, Çalık M (2010) Students’ conceptions of the particulate nature of matter at secondary and tertiary level. Int J Sci Educ 8(1):165–184
Zurück zum Zitat Benson DL, Wittrock MC, Baur ME (1993) Students’ preconceptions of the nature of gases. J Res Sci Teach 30(6):587–597CrossRef Benson DL, Wittrock MC, Baur ME (1993) Students’ preconceptions of the nature of gases. J Res Sci Teach 30(6):587–597CrossRef
Zurück zum Zitat Berthold K, Renkl A (2009) Instructional aids to support a conceptual understanding of multiple representations. J Educ Psychol 101(1):70–87CrossRef Berthold K, Renkl A (2009) Instructional aids to support a conceptual understanding of multiple representations. J Educ Psychol 101(1):70–87CrossRef
Zurück zum Zitat Çalik M (2013) Effect of technology-embedded scientific inquiry on senior science student teachers’ self efficacy. Eurasia J Math Sci Technol Educ 9(3):223–232CrossRef Çalik M (2013) Effect of technology-embedded scientific inquiry on senior science student teachers’ self efficacy. Eurasia J Math Sci Technol Educ 9(3):223–232CrossRef
Zurück zum Zitat Çalik M, Ayas A (2005) A comparison of level of understanding of eight-grade students and science student teachers related to selected chemistry concepts. J Res Sci Teach 42(6):638–667CrossRef Çalik M, Ayas A (2005) A comparison of level of understanding of eight-grade students and science student teachers related to selected chemistry concepts. J Res Sci Teach 42(6):638–667CrossRef
Zurück zum Zitat Çalik M, Kolomuc A, Karagolge Z (2010) The effect of conceptual change pedagogy on students’ conception of rate of reaction. J Sci Educ Technol 19(5):422–433CrossRef Çalik M, Kolomuc A, Karagolge Z (2010) The effect of conceptual change pedagogy on students’ conception of rate of reaction. J Sci Educ Technol 19(5):422–433CrossRef
Zurück zum Zitat Chang H-Y, Quintana C, Krajcik JS (2010) The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Sci Educ 94(1):73–94 Chang H-Y, Quintana C, Krajcik JS (2010) The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Sci Educ 94(1):73–94
Zurück zum Zitat Chi MTH, Wylie R (2014) The ICAP framework: linking cognitive engagement to active learning outcomes. Educ Psychol 49(4):219–243CrossRef Chi MTH, Wylie R (2014) The ICAP framework: linking cognitive engagement to active learning outcomes. Educ Psychol 49(4):219–243CrossRef
Zurück zum Zitat Chi MTH, Roscoe RD, Slotta JD, Roy M, Chase CC (2012) Misconceived causal explanations for emergent processes. Cogn Sci 36(1):1–61CrossRef Chi MTH, Roscoe RD, Slotta JD, Roy M, Chase CC (2012) Misconceived causal explanations for emergent processes. Cogn Sci 36(1):1–61CrossRef
Zurück zum Zitat Chiu J, Linn M (2014) Supporting knowledge integration in chemistry with a visualization-enhanced inquiry unit. J Sci Educ Technol 23(1):37–58CrossRef Chiu J, Linn M (2014) Supporting knowledge integration in chemistry with a visualization-enhanced inquiry unit. J Sci Educ Technol 23(1):37–58CrossRef
Zurück zum Zitat Corradi D, Clarebout G, Elen J (2015) Cognitive dissonance as an instructional tool for understanding chemical representations. J Sci Educ Technol 24(5):684–695CrossRef Corradi D, Clarebout G, Elen J (2015) Cognitive dissonance as an instructional tool for understanding chemical representations. J Sci Educ Technol 24(5):684–695CrossRef
Zurück zum Zitat de Vos W, Verdonk AH (1996) The particulate nature of matter in science education and in science. J Res Sci Teach 33(6):657–664CrossRef de Vos W, Verdonk AH (1996) The particulate nature of matter in science education and in science. J Res Sci Teach 33(6):657–664CrossRef
Zurück zum Zitat Frederiksen JR, White BY, Gutwill J (1999) Dynamic mental models in learning science: the importance of constructing derivational linkages among models. J Res Sci Teach 36(7):806–836CrossRef Frederiksen JR, White BY, Gutwill J (1999) Dynamic mental models in learning science: the importance of constructing derivational linkages among models. J Res Sci Teach 36(7):806–836CrossRef
Zurück zum Zitat Gentner D, Markman AB (1997) Structure mapping in analogy and similarity. Am Psychol 52(1):45–56CrossRef Gentner D, Markman AB (1997) Structure mapping in analogy and similarity. Am Psychol 52(1):45–56CrossRef
Zurück zum Zitat Gilbert J, Treagust D (2009) Introduction: macro, submicro and symbolic representations and the relationship between them: key models in chemical education. In: Gilbert J, Treagust D (eds) Multiple representations in chemical education, vol 4. Springer, Dordrecht, pp 1–8CrossRef Gilbert J, Treagust D (2009) Introduction: macro, submicro and symbolic representations and the relationship between them: key models in chemical education. In: Gilbert J, Treagust D (eds) Multiple representations in chemical education, vol 4. Springer, Dordrecht, pp 1–8CrossRef
Zurück zum Zitat Hmelo-Silver CE, Pfeffer MG (2004) Comparing expert and novice understanding of a complex system from the perspective of structures, behaviors, and functions. Cogn Sci 28(1):127–138CrossRef Hmelo-Silver CE, Pfeffer MG (2004) Comparing expert and novice understanding of a complex system from the perspective of structures, behaviors, and functions. Cogn Sci 28(1):127–138CrossRef
Zurück zum Zitat Hmelo-Silver CE, Marathe S, Liu L (2007) Fish swim, rocks sit, lungs breathe: expert-novice understanding of complex systems. J Learn Sci 16(3):307–331CrossRef Hmelo-Silver CE, Marathe S, Liu L (2007) Fish swim, rocks sit, lungs breathe: expert-novice understanding of complex systems. J Learn Sci 16(3):307–331CrossRef
Zurück zum Zitat Jaber LZ, BouJaoude S (2012) A macro–micro–symbolic teaching to promote relational understanding of chemical reactions. Int J Sci Educ 34(7):973–998CrossRef Jaber LZ, BouJaoude S (2012) A macro–micro–symbolic teaching to promote relational understanding of chemical reactions. Int J Sci Educ 34(7):973–998CrossRef
Zurück zum Zitat Jacobson MJ, Wilensky U (2006) Complex systems in education: scientific and educational importance and implications for the learning sciences. J Learn Sci 15(1):11–34CrossRef Jacobson MJ, Wilensky U (2006) Complex systems in education: scientific and educational importance and implications for the learning sciences. J Learn Sci 15(1):11–34CrossRef
Zurück zum Zitat Johnstone AH (1982) Macro- and micro-chemistry. Sch Sci Rev 64:377–379 Johnstone AH (1982) Macro- and micro-chemistry. Sch Sci Rev 64:377–379
Zurück zum Zitat Johnstone AH (2000) Teaching of chemistry: logical or psychological? Chem Educ Res Pract Eur 1(1):9–15CrossRef Johnstone AH (2000) Teaching of chemistry: logical or psychological? Chem Educ Res Pract Eur 1(1):9–15CrossRef
Zurück zum Zitat Kautz CH, Heron PRL, Loverude ME, McDermott LC (2005) Student understanding of the ideal gas law, part I: a macroscopic perspective. Am J Phys 73(11):1055–1063CrossRef Kautz CH, Heron PRL, Loverude ME, McDermott LC (2005) Student understanding of the ideal gas law, part I: a macroscopic perspective. Am J Phys 73(11):1055–1063CrossRef
Zurück zum Zitat Kozma RB (2000) The use of multiple representations and the social construction of understanding in chemistry. In: Jacobson M, Kozma R (eds) Innovations in science and mathematics education: Advanced designs for technologies of learning. Erlbaum, Mahwah, pp 11–46 Kozma RB (2000) The use of multiple representations and the social construction of understanding in chemistry. In: Jacobson M, Kozma R (eds) Innovations in science and mathematics education: Advanced designs for technologies of learning. Erlbaum, Mahwah, pp 11–46
Zurück zum Zitat Kozma R (2003) The material features of multiple representations and their cognitive and social affordances for science understanding. Learn Instr 13(2):205–226CrossRef Kozma R (2003) The material features of multiple representations and their cognitive and social affordances for science understanding. Learn Instr 13(2):205–226CrossRef
Zurück zum Zitat Kozma R, Russell J (2005) Students becoming chemists: developing representational competence. In: Gilbert J (ed) Visualization in science education, vol 1. Springer, Dordrecht, pp 121–145CrossRef Kozma R, Russell J (2005) Students becoming chemists: developing representational competence. In: Gilbert J (ed) Visualization in science education, vol 1. Springer, Dordrecht, pp 121–145CrossRef
Zurück zum Zitat Levy D (2013) How dynamic visualization technology can support molecular reasoning. J Sci Educ Technol 22(5):702–717CrossRef Levy D (2013) How dynamic visualization technology can support molecular reasoning. J Sci Educ Technol 22(5):702–717CrossRef
Zurück zum Zitat Levy S, Wilensky U (2009) Students’ learning with the connected chemistry (CC1) curriculum: navigating the complexities of the particulate world. J Sci Educ Technol 18(3):243–254CrossRef Levy S, Wilensky U (2009) Students’ learning with the connected chemistry (CC1) curriculum: navigating the complexities of the particulate world. J Sci Educ Technol 18(3):243–254CrossRef
Zurück zum Zitat Linn MC, Davis EA, Bell P (2004) Inquiry and technology. In: Linn MC, Davis EA, Bell P (eds) Internet environments for science education. Lawrence Erlbaum Associates, Mahwah, pp 3–28 Linn MC, Davis EA, Bell P (2004) Inquiry and technology. In: Linn MC, Davis EA, Bell P (eds) Internet environments for science education. Lawrence Erlbaum Associates, Mahwah, pp 3–28
Zurück zum Zitat Liu L, Hmelo-Silver CE (2009) Promoting complex systems learning through the use of conceptual representations in hypermedia. J Res Sci Teach 46(9):1023–1040CrossRef Liu L, Hmelo-Silver CE (2009) Promoting complex systems learning through the use of conceptual representations in hypermedia. J Res Sci Teach 46(9):1023–1040CrossRef
Zurück zum Zitat Mas CJ, Perez JH, Harris H (1987) Parallels between adolescents’ conceptions of gases and the history of chemistry. J Chem Educ 64:616–618CrossRef Mas CJ, Perez JH, Harris H (1987) Parallels between adolescents’ conceptions of gases and the history of chemistry. J Chem Educ 64:616–618CrossRef
Zurück zum Zitat Nakhleh MB (1992) Why some students don’t learn chemistry: chemical misconceptions. J Chem Educ 69(3):191–196CrossRef Nakhleh MB (1992) Why some students don’t learn chemistry: chemical misconceptions. J Chem Educ 69(3):191–196CrossRef
Zurück zum Zitat Plass J, Homer B, Hayward E (2009) Design factors for educationally effective animations and simulations. J Comput High Educ 21(1):31–61CrossRef Plass J, Homer B, Hayward E (2009) Design factors for educationally effective animations and simulations. J Comput High Educ 21(1):31–61CrossRef
Zurück zum Zitat Quintana C, Reiser BJ, Davis EA, Krajcik J, Fretz E, Duncan RG et al (2004) A scaffolding design framework for software to support science inquiry. J Learn Sci 13(3):337–386CrossRef Quintana C, Reiser BJ, Davis EA, Krajcik J, Fretz E, Duncan RG et al (2004) A scaffolding design framework for software to support science inquiry. J Learn Sci 13(3):337–386CrossRef
Zurück zum Zitat Russell J, Kozma R, Becker D, Susskind T (2000) SMV: Chem; Synchronized multiple visualizations in chemistry. Wiley, New York Russell J, Kozma R, Becker D, Susskind T (2000) SMV: Chem; Synchronized multiple visualizations in chemistry. Wiley, New York
Zurück zum Zitat Snir J, Smith CL, Raz G (2003) Linking phenomena with competing underlying models: a software tool for introducing students to the particulate model of matter. Sci Educ 87:794–830CrossRef Snir J, Smith CL, Raz G (2003) Linking phenomena with competing underlying models: a software tool for introducing students to the particulate model of matter. Sci Educ 87:794–830CrossRef
Zurück zum Zitat Stavy R (1988) Children’s conception of gas. Int J Sci Educ 10(5):553–560CrossRef Stavy R (1988) Children’s conception of gas. Int J Sci Educ 10(5):553–560CrossRef
Zurück zum Zitat Stieff M, Wilensky U (2003) Connected chemistry—incorporating interactive simulations into the chemistry classroom. J Sci Educ Technol 12(3):285–302CrossRef Stieff M, Wilensky U (2003) Connected chemistry—incorporating interactive simulations into the chemistry classroom. J Sci Educ Technol 12(3):285–302CrossRef
Zurück zum Zitat Taber KS (2013) Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chem Educ Res Pract 14(2):156–168CrossRef Taber KS (2013) Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chem Educ Res Pract 14(2):156–168CrossRef
Zurück zum Zitat Treagust D, Chittleborough G, Mamiala T (2003) The role of submicroscopic and symbolic representations in chemical explanations. Int J Sci Educ 25(11):1353–1368CrossRef Treagust D, Chittleborough G, Mamiala T (2003) The role of submicroscopic and symbolic representations in chemical explanations. Int J Sci Educ 25(11):1353–1368CrossRef
Zurück zum Zitat Tsai CC (1999) Overcoming junior high school students’ misconceptions about microscopic views of phase change: a study of an analogy activity. J Sci Educ Technol 8(1):83–91CrossRef Tsai CC (1999) Overcoming junior high school students’ misconceptions about microscopic views of phase change: a study of an analogy activity. J Sci Educ Technol 8(1):83–91CrossRef
Zurück zum Zitat Tsaparlis G (2009) Learning at the macro level: the role of practical work. In: Gilbert J, Treagust D (eds) Multiple representations in chemical education, vol 4. Springer, Dordrecht, pp 109–136CrossRef Tsaparlis G (2009) Learning at the macro level: the role of practical work. In: Gilbert J, Treagust D (eds) Multiple representations in chemical education, vol 4. Springer, Dordrecht, pp 109–136CrossRef
Zurück zum Zitat Ultay N, Çalik M (2016) A comparison of different teaching designs of ‘acids and bases’ subject. Eurasia J Math Sci Technol Educ 12(1):57–86 Ultay N, Çalik M (2016) A comparison of different teaching designs of ‘acids and bases’ subject. Eurasia J Math Sci Technol Educ 12(1):57–86
Zurück zum Zitat van der Meij J, de Jong T (2006) Supporting students’ learning with multiple representations in a dynamic simulation-based learning environment. Learn Instr 16(3):199–212CrossRef van der Meij J, de Jong T (2006) Supporting students’ learning with multiple representations in a dynamic simulation-based learning environment. Learn Instr 16(3):199–212CrossRef
Zurück zum Zitat White R, Gunstone R (1992) Probing understanding. The Falmer Press, London White R, Gunstone R (1992) Probing understanding. The Falmer Press, London
Zurück zum Zitat Wu H-K, Puntambekar S (2012) Pedagogical affordances of multiple external representations in scientific processes. J Sci Educ Technol 21(6):754–767CrossRef Wu H-K, Puntambekar S (2012) Pedagogical affordances of multiple external representations in scientific processes. J Sci Educ Technol 21(6):754–767CrossRef
Zurück zum Zitat Wu H-K, Shah P (2004) Exploring visuospatial thinking in chemistry learning. Sci Educ 88(3):465–492CrossRef Wu H-K, Shah P (2004) Exploring visuospatial thinking in chemistry learning. Sci Educ 88(3):465–492CrossRef
Zurück zum Zitat Wu H-K, Krajcik JS, Soloway E (2001) Promoting understanding of chemical representations: students’ use of a visualization tool in the classroom. J Res Sci Teach 38(7):821–842CrossRef Wu H-K, Krajcik JS, Soloway E (2001) Promoting understanding of chemical representations: students’ use of a visualization tool in the classroom. J Res Sci Teach 38(7):821–842CrossRef
Zurück zum Zitat Zhang ZH, Linn MC (2013) Learning from chemical visualizations: comparing generation and selection. Int J Sci Educ 35(13):2174–2197CrossRef Zhang ZH, Linn MC (2013) Learning from chemical visualizations: comparing generation and selection. Int J Sci Educ 35(13):2174–2197CrossRef
Metadaten
Titel
Inter-level Scaffolding and Sequences of Representational Activities in Teaching a Chemical System with Graphical Simulations
verfasst von
Na Li
John B. Black
Publikationsdatum
19.05.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Science Education and Technology / Ausgabe 5/2016
Print ISSN: 1059-0145
Elektronische ISSN: 1573-1839
DOI
https://doi.org/10.1007/s10956-016-9626-4

Weitere Artikel der Ausgabe 5/2016

Journal of Science Education and Technology 5/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.