Skip to main content
Erschienen in: The Journal of Supercomputing 1/2018

19.07.2017

Interactive 3D simulation for fluid–structure interactions using dual coupled GPUs

verfasst von: Bob Zigon, Luoding Zhu, Fengguang Song

Erschienen in: The Journal of Supercomputing | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The scope of this work involves the integration of high-speed parallel computation with interactive, 3D visualization of the lattice-Boltzmann-based immersed boundary method for fluid–structure interaction. An NVIDIA Tesla K40c is used for the computations, while an NVIDIA Quadro K5000 is used for 3D vector field visualization. The simulation can be paused at any time step so that the vector field can be explored. The density and placement of streamlines and glyphs are adjustable by the user, while panning and zooming is controlled by the mouse. The simulation can then be resumed. Unlike most scientific applications in computational fluid dynamics where visualization is performed after the computations, our software allows for real-time visualizations of the flow fields while the computations take place. To the best of our knowledge, such a tool on GPUs for FSI does not exist. Our software can facilitate debugging, enable observation of detailed local fields of flow and deformation while computing, and expedite identification of ‘correct’ parameter combinations in parametric studies for new phenomenon. Therefore, our software is expected to shorten the ‘time to solution’ process and expedite the scientific discoveries via scientific computing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Lenovo D30, 8 core E5-2609@2.4GHz, 32GB RAM, Windows 7/64.
 
Literatur
1.
Zurück zum Zitat Tian FB, Luo H, Zhu L, Lu XY (2010) Interaction between a flexible filament and a downstream rigid body. Phys Rev E 82:026301CrossRef Tian FB, Luo H, Zhu L, Lu XY (2010) Interaction between a flexible filament and a downstream rigid body. Phys Rev E 82:026301CrossRef
2.
Zurück zum Zitat Espinha LC, Hoey DA, Fernandes PR, Rodrigues HC, Jacobs CR (2014) Oscillatory fluid flow influences primary cilia and microtubule mechanics. Cytoskeleton 71:435–445CrossRef Espinha LC, Hoey DA, Fernandes PR, Rodrigues HC, Jacobs CR (2014) Oscillatory fluid flow influences primary cilia and microtubule mechanics. Cytoskeleton 71:435–445CrossRef
3.
Zurück zum Zitat Huang S, Li R, Li QS (2013) Numerical simulation on fluid–structure interaction of wind around super-tall building at high reynolds number conditions. Struct Eng Mech Int J 46:197–212CrossRef Huang S, Li R, Li QS (2013) Numerical simulation on fluid–structure interaction of wind around super-tall building at high reynolds number conditions. Struct Eng Mech Int J 46:197–212CrossRef
6.
Zurück zum Zitat LeVeque RJ, Li ZL (1997) Immersed interface methods for Stokes flows with elastic boundaries or surface tension. SIAM J Sci Comput 18:709–735MathSciNetCrossRefMATH LeVeque RJ, Li ZL (1997) Immersed interface methods for Stokes flows with elastic boundaries or surface tension. SIAM J Sci Comput 18:709–735MathSciNetCrossRefMATH
7.
Zurück zum Zitat Cortez R (2000) A vortex/impulse method for immersed boundary motion in high Reynolds number flows. J Comput Phys 160:385–400MathSciNetCrossRefMATH Cortez R (2000) A vortex/impulse method for immersed boundary motion in high Reynolds number flows. J Comput Phys 160:385–400MathSciNetCrossRefMATH
8.
Zurück zum Zitat Wang XS (2006) From immersed boundary method to immersed continuum method. Int J Multiscale Comput Eng 4:127–145CrossRef Wang XS (2006) From immersed boundary method to immersed continuum method. Int J Multiscale Comput Eng 4:127–145CrossRef
9.
10.
Zurück zum Zitat Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MathSciNetCrossRefMATH Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MathSciNetCrossRefMATH
11.
Zurück zum Zitat Glowinski R, Pan T, Periaux J (1994) A fictitious domain method for Dirichlet problem and applications. Comput Methods Appl Mech Eng 111:1994MathSciNetCrossRefMATH Glowinski R, Pan T, Periaux J (1994) A fictitious domain method for Dirichlet problem and applications. Comput Methods Appl Mech Eng 111:1994MathSciNetCrossRefMATH
12.
Zurück zum Zitat Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Mech Appl Mech Eng 118:179–197MathSciNetCrossRefMATH Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Mech Appl Mech Eng 118:179–197MathSciNetCrossRefMATH
13.
Zurück zum Zitat Cottet G-H, Maitre E (2006) A level set method for fluid–structure interactions with immersed surfaces. Math Models Methods Appl Sci 16:415–438MathSciNetCrossRefMATH Cottet G-H, Maitre E (2006) A level set method for fluid–structure interactions with immersed surfaces. Math Models Methods Appl Sci 16:415–438MathSciNetCrossRefMATH
14.
Zurück zum Zitat Kim J-D, Li Y, Li X (2013) Simulation of parachute FSI using the front tracking method. J Fluids Struct 37:100–119CrossRef Kim J-D, Li Y, Li X (2013) Simulation of parachute FSI using the front tracking method. J Fluids Struct 37:100–119CrossRef
15.
Zurück zum Zitat Peskin CS (1972) Flow patterns around heart valves: a digital computer method for solving the equations of motion, vol 378. PhD thesis. Physiology, Albert Einstein College of Medicine, University of Microfilms, pp 72–30 Peskin CS (1972) Flow patterns around heart valves: a digital computer method for solving the equations of motion, vol 378. PhD thesis. Physiology, Albert Einstein College of Medicine, University of Microfilms, pp 72–30
16.
Zurück zum Zitat Peskin CS (1977) Flow patterns around heart valves; a numerical method. J Comput Phys 25:220CrossRef Peskin CS (1977) Flow patterns around heart valves; a numerical method. J Comput Phys 25:220CrossRef
18.
Zurück zum Zitat Rosar ME, Peskin CS (2001) Fluid flow in collapsible elastic tubes: a three-dimensional numerical model. New York J Math 7:281–302MathSciNetMATH Rosar ME, Peskin CS (2001) Fluid flow in collapsible elastic tubes: a three-dimensional numerical model. New York J Math 7:281–302MathSciNetMATH
19.
20.
Zurück zum Zitat Lai MC, Peskin CS (2000) An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J Comput Phys 160:705MathSciNetCrossRefMATH Lai MC, Peskin CS (2000) An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J Comput Phys 160:705MathSciNetCrossRefMATH
21.
Zurück zum Zitat Griffith BE, Peskin CS (2015) On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficient smooth problems. J Comput Phys 208:75–105CrossRefMATH Griffith BE, Peskin CS (2015) On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficient smooth problems. J Comput Phys 208:75–105CrossRefMATH
22.
Zurück zum Zitat Zhu L, Peskin CS (2002) Simulation of a flexible flapping filament in a flowing soap film by the immersed boundary method. J Comput Phys 179:452–468MathSciNetCrossRefMATH Zhu L, Peskin CS (2002) Simulation of a flexible flapping filament in a flowing soap film by the immersed boundary method. J Comput Phys 179:452–468MathSciNetCrossRefMATH
23.
Zurück zum Zitat Kim Y, Peskin CS (2007) Penalty immersed boundary method for an elastic boundary with mass. Phys Fluids 19:053103CrossRefMATH Kim Y, Peskin CS (2007) Penalty immersed boundary method for an elastic boundary with mass. Phys Fluids 19:053103CrossRefMATH
24.
Zurück zum Zitat Fauci LJ, Fogelson AL (1993) Truncated Newton methods and the modeling of complex elastic structures. Commun Pure Appl Math 46:787MathSciNetCrossRefMATH Fauci LJ, Fogelson AL (1993) Truncated Newton methods and the modeling of complex elastic structures. Commun Pure Appl Math 46:787MathSciNetCrossRefMATH
26.
Zurück zum Zitat Mori Y, Peskin CS (2008) Implicit second-order immersed boundary method with boundary mass. Comput Methods Appl Mech Eng 197:2049–2067MathSciNetCrossRefMATH Mori Y, Peskin CS (2008) Implicit second-order immersed boundary method with boundary mass. Comput Methods Appl Mech Eng 197:2049–2067MathSciNetCrossRefMATH
27.
Zurück zum Zitat Hao J, Zhu L (2010) A lattice Boltzmann based implicit immersed boundary method for fluid–structure-interaction. Comput Math Appl 59:185–193MathSciNetCrossRefMATH Hao J, Zhu L (2010) A lattice Boltzmann based implicit immersed boundary method for fluid–structure-interaction. Comput Math Appl 59:185–193MathSciNetCrossRefMATH
28.
Zurück zum Zitat Hao J, Zhu L (2011) A 3D implicit immersed boundary method with application. Theor Appl Mech Lett 1:062002CrossRef Hao J, Zhu L (2011) A 3D implicit immersed boundary method with application. Theor Appl Mech Lett 1:062002CrossRef
29.
Zurück zum Zitat Lim S, Ferent A, Wang XS, Peskin CS (2008) Dynamics of a closed rod with twist and bend in fluid. SIAM J Sci Comput 31:273–302MathSciNetCrossRefMATH Lim S, Ferent A, Wang XS, Peskin CS (2008) Dynamics of a closed rod with twist and bend in fluid. SIAM J Sci Comput 31:273–302MathSciNetCrossRefMATH
30.
Zurück zum Zitat Atzberger PJ, Kramer PR, Peskin CS (2006) A stochastic immersed boundary method for biological fluid dynamics at microscopic length scale. J Comput Phys 224:1255–1292CrossRefMATH Atzberger PJ, Kramer PR, Peskin CS (2006) A stochastic immersed boundary method for biological fluid dynamics at microscopic length scale. J Comput Phys 224:1255–1292CrossRefMATH
31.
Zurück zum Zitat Zhu L, He G, Wang S, Miller L, Zhang X, You Q, Fang S (2011) An immersed boundary method based on the lattice Boltzmann approach in three dimensions with application. Comput Math Appl 61:3506–3518MathSciNetCrossRefMATH Zhu L, He G, Wang S, Miller L, Zhang X, You Q, Fang S (2011) An immersed boundary method based on the lattice Boltzmann approach in three dimensions with application. Comput Math Appl 61:3506–3518MathSciNetCrossRefMATH
32.
Zurück zum Zitat Feng ZG, Michaelides EE (2005) Proteus: a direct forcing method in the simulations of particulate flows. J Comput Phys 202:20–51CrossRefMATH Feng ZG, Michaelides EE (2005) Proteus: a direct forcing method in the simulations of particulate flows. J Comput Phys 202:20–51CrossRefMATH
33.
Zurück zum Zitat Tian FB, Luo H, Zhu L, Liao JC, Lu X-T (2011) An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J Comput Phys 230(19):7266–7283MathSciNetCrossRefMATH Tian FB, Luo H, Zhu L, Liao JC, Lu X-T (2011) An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J Comput Phys 230(19):7266–7283MathSciNetCrossRefMATH
34.
Zurück zum Zitat Zhang C, Cheng Y, Zhu L, Wu J (2016) Accuracy improvement of the immersed boundary-lattice Boltzmann coupling scheme by iterative force correction. Comput Fluids 124:246–260MathSciNetCrossRef Zhang C, Cheng Y, Zhu L, Wu J (2016) Accuracy improvement of the immersed boundary-lattice Boltzmann coupling scheme by iterative force correction. Comput Fluids 124:246–260MathSciNetCrossRef
35.
Zurück zum Zitat Wu J, Shu C (2009) Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J Comput Phys 228:1963–1979CrossRefMATH Wu J, Shu C (2009) Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J Comput Phys 228:1963–1979CrossRefMATH
36.
Zurück zum Zitat Niu XD, Shu C, Chew YT, Peng Y (2006) A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys Lett A 354:173–182CrossRefMATH Niu XD, Shu C, Chew YT, Peng Y (2006) A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys Lett A 354:173–182CrossRefMATH
37.
Zurück zum Zitat Wu J, Shu C, Zhang YH (2010) Simulation of incompressible viscous flows around moving objects by a variant of immersed boundary-lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow 62:327–354MathSciNetMATH Wu J, Shu C, Zhang YH (2010) Simulation of incompressible viscous flows around moving objects by a variant of immersed boundary-lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow 62:327–354MathSciNetMATH
38.
Zurück zum Zitat Cheng Y, Zhu L, Zhang C (2014) Numerical study of stability and accuracy of the immersed boundary method coupled to the lattice Boltzmann BGK model. Commun Comput Phys 16:136–168MathSciNetCrossRefMATH Cheng Y, Zhu L, Zhang C (2014) Numerical study of stability and accuracy of the immersed boundary method coupled to the lattice Boltzmann BGK model. Commun Comput Phys 16:136–168MathSciNetCrossRefMATH
39.
Zurück zum Zitat Cheng Y, Zhang H (2010) Immersed boundary method and lattice Boltzmann method coupled FSI simulation of mitral leaflet flow. Comput Fluids 39:871–881MathSciNetCrossRefMATH Cheng Y, Zhang H (2010) Immersed boundary method and lattice Boltzmann method coupled FSI simulation of mitral leaflet flow. Comput Fluids 39:871–881MathSciNetCrossRefMATH
40.
Zurück zum Zitat Shu C, Liu N, Chew Y-T (2007) A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder. J Comput Phys 226:1607–1622CrossRefMATH Shu C, Liu N, Chew Y-T (2007) A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder. J Comput Phys 226:1607–1622CrossRefMATH
41.
Zurück zum Zitat Liu N, Peng Y, Liang Y, Lu X (2012) Flow over a traveling wavy foil with a passively flapping flat plate. Phys Rev E 85:056316CrossRef Liu N, Peng Y, Liang Y, Lu X (2012) Flow over a traveling wavy foil with a passively flapping flat plate. Phys Rev E 85:056316CrossRef
42.
Zurück zum Zitat Lee P, Griffith BE, Peskin CS (2010) The immersed boundary method for advection–electrodiffusion with implicit timestepping and local mesh refinement. J Comput Phys 229:5208–5227MathSciNetCrossRefMATH Lee P, Griffith BE, Peskin CS (2010) The immersed boundary method for advection–electrodiffusion with implicit timestepping and local mesh refinement. J Comput Phys 229:5208–5227MathSciNetCrossRefMATH
43.
Zurück zum Zitat Fai TG, Griffith BE, Mori Y, Peskin CS (2014) Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers II: theory. SIAM J Sci Comput 36:B589–B621MathSciNetCrossRefMATH Fai TG, Griffith BE, Mori Y, Peskin CS (2014) Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers II: theory. SIAM J Sci Comput 36:B589–B621MathSciNetCrossRefMATH
44.
Zurück zum Zitat Huang H, Sukop M, Lu X (2015) Multiphase lattice Boltzmann methods: theory and application. Wiley, HobokenCrossRef Huang H, Sukop M, Lu X (2015) Multiphase lattice Boltzmann methods: theory and application. Wiley, HobokenCrossRef
45.
Zurück zum Zitat Guo Z, Shu C (2013) Lattice Boltzmann method and its applications in engineering. World Scientific, SingaporeCrossRefMATH Guo Z, Shu C (2013) Lattice Boltzmann method and its applications in engineering. World Scientific, SingaporeCrossRefMATH
46.
Zurück zum Zitat Qian YH (1990) Lattice gas and lattice kinetic theory applied to the Navier-Stokes equations, PhD thesis. University Pierre et Marie Curie, Paris (1990) Qian YH (1990) Lattice gas and lattice kinetic theory applied to the Navier-Stokes equations, PhD thesis. University Pierre et Marie Curie, Paris (1990)
47.
Zurück zum Zitat Hou S, Zou Q, Chen S, Doolen G, Cogley A (1995) Simulation of cavity flow by the lattice Boltzmann method. J Comput Phys 118:329CrossRefMATH Hou S, Zou Q, Chen S, Doolen G, Cogley A (1995) Simulation of cavity flow by the lattice Boltzmann method. J Comput Phys 118:329CrossRefMATH
48.
Zurück zum Zitat He X, Chen S, Zhang R (1999) A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J Comput Phys 152:642–663MathSciNetCrossRefMATH He X, Chen S, Zhang R (1999) A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J Comput Phys 152:642–663MathSciNetCrossRefMATH
49.
Zurück zum Zitat Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models—an introduction. Springer, BerlinCrossRefMATH Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models—an introduction. Springer, BerlinCrossRefMATH
50.
Zurück zum Zitat Succi S (2001) The lattice Boltzmann equation. Oxford Univ Press, OxfordMATH Succi S (2001) The lattice Boltzmann equation. Oxford Univ Press, OxfordMATH
51.
Zurück zum Zitat Luo LS (1998) Unified theory of the lattice Boltzmann models for nonideal gases. Phys Rev Lett 81:1618CrossRef Luo LS (1998) Unified theory of the lattice Boltzmann models for nonideal gases. Phys Rev Lett 81:1618CrossRef
53.
Zurück zum Zitat Valero-Lara P, Igual FD, Prieto-Matías Pinelli A, Favier J (2015) Accelerating fluid–solid simulations (lattice-Boltzmann & immersed-boundary) on heterogeneous architectures. J Comput Sci 10:249–261CrossRef Valero-Lara P, Igual FD, Prieto-Matías Pinelli A, Favier J (2015) Accelerating fluid–solid simulations (lattice-Boltzmann & immersed-boundary) on heterogeneous architectures. J Comput Sci 10:249–261CrossRef
54.
Zurück zum Zitat Mawson M, Valero-Lara P, Favier J, Pinelli A, Revell A (2013) Fast fluid–structure interaction using lattice Boltzmann and immersed boundary methods. In: NVIDIA GPU Conference Mawson M, Valero-Lara P, Favier J, Pinelli A, Revell A (2013) Fast fluid–structure interaction using lattice Boltzmann and immersed boundary methods. In: NVIDIA GPU Conference
56.
Zurück zum Zitat Bhaniramka P, Demange Y (2002) OpenGL volumizer: a toolkit for high quality volume rendering of large data sets. In: 2002 Symposium on Volume Visualization and Graphics, pp 45–53 Bhaniramka P, Demange Y (2002) OpenGL volumizer: a toolkit for high quality volume rendering of large data sets. In: 2002 Symposium on Volume Visualization and Graphics, pp 45–53
57.
Zurück zum Zitat Ahrens J, Geveci B, Law C (2005) ParaView: an end user tool for large data visualization. Visualization Handbook, Elsevier. ISBN 13:978-0123875822 Ahrens J, Geveci B, Law C (2005) ParaView: an end user tool for large data visualization. Visualization Handbook, Elsevier. ISBN 13:978-0123875822
58.
Zurück zum Zitat Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire D, Biagas K, Miller M, Harrison C, Weber GH, Krishnan H, Fogal T, Sanderson A, Garth C, Bethel E, Camp D, Rübel O, Durant M, Favre JM, Navrátil P (2012) VisIt: an end-user tool for visualizing and analyzing very large data. In: High performance visualization—enabling extreme-scale scientific insight, pp 357–372 Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire D, Biagas K, Miller M, Harrison C, Weber GH, Krishnan H, Fogal T, Sanderson A, Garth C, Bethel E, Camp D, Rübel O, Durant M, Favre JM, Navrátil P (2012) VisIt: an end-user tool for visualizing and analyzing very large data. In: High performance visualization—enabling extreme-scale scientific insight, pp 357–372
59.
Zurück zum Zitat Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases, I; small amplitude process in charged and neutral one-component system. Phys Rev 94:511CrossRefMATH Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases, I; small amplitude process in charged and neutral one-component system. Phys Rev 94:511CrossRefMATH
60.
Zurück zum Zitat Bailey M, Cunningham S (2012) Graphics shaders theory and practice, 2nd edn. CRC Press, Boca Raton Bailey M, Cunningham S (2012) Graphics shaders theory and practice, 2nd edn. CRC Press, Boca Raton
61.
Zurück zum Zitat Weiskopf D (2006) GPU based interactive visualization techniques. Springer, BerlinMATH Weiskopf D (2006) GPU based interactive visualization techniques. Springer, BerlinMATH
62.
Zurück zum Zitat Telea AC (2015) Data visualization principles and practice, 2nd edn. CRC Press, Boca Raton Telea AC (2015) Data visualization principles and practice, 2nd edn. CRC Press, Boca Raton
63.
Zurück zum Zitat Yu H, Wang C, Ma KL (2007) Parallel hierarchical visualization of large time-varying 3D vector fields. In: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, ACM, Nov 16, p 24 Yu H, Wang C, Ma KL (2007) Parallel hierarchical visualization of large time-varying 3D vector fields. In: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, ACM, Nov 16, p 24
65.
Zurück zum Zitat Spencer B, Laramee RS, Chen G, Zhang E (2009) Evenly space streamlines for surfaces: an image based approach. Comput Graph Forum 28:1618–1631CrossRef Spencer B, Laramee RS, Chen G, Zhang E (2009) Evenly space streamlines for surfaces: an image based approach. Comput Graph Forum 28:1618–1631CrossRef
66.
Zurück zum Zitat Max N, Becker B, Crawfis R (1993) Flow volumes for interactive vector field visualization. In: Proceedings Visualization ’93, pp 19–24 Max N, Becker B, Crawfis R (1993) Flow volumes for interactive vector field visualization. In: Proceedings Visualization ’93, pp 19–24
Metadaten
Titel
Interactive 3D simulation for fluid–structure interactions using dual coupled GPUs
verfasst von
Bob Zigon
Luoding Zhu
Fengguang Song
Publikationsdatum
19.07.2017
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 1/2018
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-017-2103-x

Weitere Artikel der Ausgabe 1/2018

The Journal of Supercomputing 1/2018 Zur Ausgabe