Skip to main content

2013 | OriginalPaper | Buchkapitel

10. Interarea Mode Analysis for Large Power Systems Using Synchrophasor Data

verfasst von : Luigi Vanfretti, Yuwa Chompoobutrgool, Joe H. Chow

Erschienen in: Power System Coherency and Model Reduction

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Interarea oscillations are predominantly governed by the slower electromechanical modes which, in turn, are determined by the coherent machine rotor angles and speeds. The issue is that, although these rotor angles and speeds provide the best visibility of such modes, currently they are not available from phasor measurement units (PMU). As such, the aim of this chapter is to demonstrate that interarea oscillations are observable in the network variables, such as voltages and line currents, which are measured by PMU. By analyzing the electromechanical modes in the network variables, we can trace how electromechanical oscillations are spread through the power network following a disturbance. Applying eigenvalue and sensitivity analysis, we provide an analytical framework to understand the nature of these network oscillations through a relationship termed network modeshapes. Using this relationship, a novel concept, “dominant interarea oscillation paths,” is developed to identify the passageways where the interarea modes of concern travel the most. We demonstrate the concept of the dominant path with an equivalent two-area system. We propose an algorithm for identification of the dominant paths and illustrate with a reduced model of a large-scale network. Finally, we end this chapter with an important application of the concept: feedback input signal selection for damping controller design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The subscript (0) denotes the evaluation of the sensitivity at a stable equilibrium point.
 
2
A formal proof for each property can be found in [12].
 
3
These are similar to the characteristics of voltage change and angle change of the first swing mode in Fig. 13 [21] where the mode is described by a single wave equation with one spatial dimension.
 
4
For algorithms dealing with other set of information such as known system model or transient measurements, refer to [22].
 
5
The model with controls is studied in [24].
 
6
Observe from Table 10.1 that the path 42-43-44-49-50 has considerably high content of Mode 1; however, it has lesser content than that of the specified dominant path. This second path is thus termed “secondary dominant interarea oscillation path.” For details regarding multiple interaction paths, refer to [26].
 
7
Note that the generator speed is not currently available from PMUs.
 
8
\(\omega _2\) is in anti-phase to any signals starting from \(\omega _1\) to the interarea pivot (middle point in Fig. 10.15b). Thus, two compensators are required for a rotation of 180\(^\circ \) and an additional stage for the needed phase compensation.
 
9
Although not shown here, the angle of departure of \(\omega _2\) is negative while the others are positive. This is the reason why not only an additional stage compensator is required but also a very high gain.
 
10
The effective gain for the generator speed signals is naturally higher comparing to the angles due to the scaling introduced by the system frequency, \(2\pi f_{b} = 314.16\).
 
11
However, it is noted that none of the signals are actually available from PMUs: \(\varDelta \theta _{12}\) due to placement practice [31] and \(\omega _1 - \omega _2\) due to PMU characteristics [30].
 
Literatur
1.
Zurück zum Zitat J.H. Chow, G. Peponides, P.V. Kokotović, B. Avramović, J.R. Winkelman, Time-Scale Modeling of Dynamic Networks with Applications to Power System (Springer, New York, 1982)CrossRef J.H. Chow, G. Peponides, P.V. Kokotović, B. Avramović, J.R. Winkelman, Time-Scale Modeling of Dynamic Networks with Applications to Power System (Springer, New York, 1982)CrossRef
2.
Zurück zum Zitat M. Klein, G.J. Rogers, P. Kundur, A fundamental study of inter-area oscillations in power systems. IEEE Trans. Power Sys. 6, 914–921 (1991)CrossRef M. Klein, G.J. Rogers, P. Kundur, A fundamental study of inter-area oscillations in power systems. IEEE Trans. Power Sys. 6, 914–921 (1991)CrossRef
3.
Zurück zum Zitat G.C. Verghese, I.J. Pérez-Arriaga, F.C. Schweppe, Selective modal analysis with application to electric power systems, part I: heuristic introduction, part II: the dynamic stability problem. IEEE Trans. Power Apparatus Sys. PAS-101, 3117–3134 (1982) G.C. Verghese, I.J. Pérez-Arriaga, F.C. Schweppe, Selective modal analysis with application to electric power systems, part I: heuristic introduction, part II: the dynamic stability problem. IEEE Trans. Power Apparatus Sys. PAS-101, 3117–3134 (1982)
4.
Zurück zum Zitat R.A. Lawson, D.A. Swann, G.F. Wright, Minimization of power system stabilizer torsional interaction on large steam Turbine-generators. IEEE Trans. Power Apparatus Sys. PAS-97(1), 183–190 (1978) R.A. Lawson, D.A. Swann, G.F. Wright, Minimization of power system stabilizer torsional interaction on large steam Turbine-generators. IEEE Trans. Power Apparatus Sys. PAS-97(1), 183–190 (1978)
5.
Zurück zum Zitat G. Rogers, Power System Oscillations (Kluwer, 1999) G. Rogers, Power System Oscillations (Kluwer, 1999)
6.
Zurück zum Zitat J.H. Chow, L. Vanfretti, A. Armenia, S. Ghiocel, S. Sarawgi, N. Bhatt, D. Bertagnolli, M. Shukla, X. Luo, D. Ellis, D. Fan, M. Patel, A.M. Hunter, D.E. Barber, G.L. Kobet, Preliminary Synchronized Phasor Data Analysis of Disturbance Events in the US Eastern Interconnection, in Proceedings of IEEE PES Power Systems Conference and Exposition, March 2009 J.H. Chow, L. Vanfretti, A. Armenia, S. Ghiocel, S. Sarawgi, N. Bhatt, D. Bertagnolli, M. Shukla, X. Luo, D. Ellis, D. Fan, M. Patel, A.M. Hunter, D.E. Barber, G.L. Kobet, Preliminary Synchronized Phasor Data Analysis of Disturbance Events in the US Eastern Interconnection, in Proceedings of IEEE PES Power Systems Conference and Exposition, March 2009
7.
Zurück zum Zitat L. Vanfretti, Notions of Phasor Measurement-Based Power System Model Reduction of Large Power Systems M.Sc. Thesis, Rensselaer Polytechnic Institute, Troy, New York, 2007 L. Vanfretti, Notions of Phasor Measurement-Based Power System Model Reduction of Large Power Systems M.Sc. Thesis, Rensselaer Polytechnic Institute, Troy, New York, 2007
8.
Zurück zum Zitat L. Vanfretti, J.H. Chow, Computation and Analysis of Power System Voltage Oscillations from Interarea Modes, in Proceedings of IEEE PES General Meeting, July 2009 L. Vanfretti, J.H. Chow, Computation and Analysis of Power System Voltage Oscillations from Interarea Modes, in Proceedings of IEEE PES General Meeting, July 2009
10.
Zurück zum Zitat FRCC Event Analysis Team, FRCC system disturbance and underfrequency load shedding event report, 26 Feb 2008 at 1:09 pm. Florida Reliability Coordinating Council, 30 Oct 2008 FRCC Event Analysis Team, FRCC system disturbance and underfrequency load shedding event report, 26 Feb 2008 at 1:09 pm. Florida Reliability Coordinating Council, 30 Oct 2008
11.
Zurück zum Zitat P.W. Sauer, M.A. Pai, Power System Dynamics and Stability (Prentice Hall, Englewood Cliffs NJ, 1998) P.W. Sauer, M.A. Pai, Power System Dynamics and Stability (Prentice Hall, Englewood Cliffs NJ, 1998)
12.
Zurück zum Zitat L. Vanfretti, Phasor Measurement-Based State Estimation of Electric Power Systems and Linearized Analysis of Power System Network Oscillations, Ph.D Thesis, Rensselaer Polytechnic Institute, Troy, New York, Dec 2009 L. Vanfretti, Phasor Measurement-Based State Estimation of Electric Power Systems and Linearized Analysis of Power System Network Oscillations, Ph.D Thesis, Rensselaer Polytechnic Institute, Troy, New York, Dec 2009
13.
Zurück zum Zitat E.Z. Zhou, Power oscillation flow study of electric power systems. Electri. Power Energy Sys. 17(2), 143–150 (1985)CrossRef E.Z. Zhou, Power oscillation flow study of electric power systems. Electri. Power Energy Sys. 17(2), 143–150 (1985)CrossRef
14.
Zurück zum Zitat J. Juang, Applied System Identification (Prentice-Hall, New Jersey, 1994)MATH J. Juang, Applied System Identification (Prentice-Hall, New Jersey, 1994)MATH
15.
Zurück zum Zitat J.H. Chow, P.V. Kokotović, Time scale modeling of sparse dynamic networks. IEEE Trans. Autom. Control AC–30, 714–722 (1985)CrossRef J.H. Chow, P.V. Kokotović, Time scale modeling of sparse dynamic networks. IEEE Trans. Autom. Control AC–30, 714–722 (1985)CrossRef
16.
Zurück zum Zitat J.H. Chow, K.W. Cheung, A toolbox for power system dynamics and control engineering education. IEEE Trans. Power Sys. 7, 1559–1564 (1992)CrossRef J.H. Chow, K.W. Cheung, A toolbox for power system dynamics and control engineering education. IEEE Trans. Power Sys. 7, 1559–1564 (1992)CrossRef
17.
Zurück zum Zitat J.F. Hauer, D.J. Trudnowski, J.G. DeSteese, A Perspective on WAMS Analysis Tools for Tracking of Oscillatory Dynamics, in Proceedings of IEEE PES General Meeting, July 2007 J.F. Hauer, D.J. Trudnowski, J.G. DeSteese, A Perspective on WAMS Analysis Tools for Tracking of Oscillatory Dynamics, in Proceedings of IEEE PES General Meeting, July 2007
18.
Zurück zum Zitat G. Rogers, Demystifying power system oscillations. IEEE Comput. Appl. Power, pp. 30–35 (1996) G. Rogers, Demystifying power system oscillations. IEEE Comput. Appl. Power, pp. 30–35 (1996)
19.
Zurück zum Zitat Y. Chompoobutrgool, L. Vanfretti, On the Persistence of Dominant Inter-Area Oscillation Paths in Large-Scale Power Networks, in Proceedings of \(8{th}\) IFAC Symposium on Power Plants and Power Systems (Toulouse, France, Sep, 2012), pp. 2–5 Y. Chompoobutrgool, L. Vanfretti, On the Persistence of Dominant Inter-Area Oscillation Paths in Large-Scale Power Networks, in Proceedings of \(8{th}\) IFAC Symposium on Power Plants and Power Systems (Toulouse, France, Sep, 2012), pp. 2–5
20.
Zurück zum Zitat J.F. Hauer, W.A. Mittelstadt, K.E. Martin, J.W. Burns, and H. Lee, Integrated Dynamic Information for the Western Power System: WAMS Analysis in 2005, Chapter 15 in Power System Stability and Control: The Electric Power Engineering Handbook, ed. by L.L. Grigsby (CRC Press, Boca Raton, 2007) J.F. Hauer, W.A. Mittelstadt, K.E. Martin, J.W. Burns, and H. Lee, Integrated Dynamic Information for the Western Power System: WAMS Analysis in 2005, Chapter 15 in Power System Stability and Control: The Electric Power Engineering Handbook, ed. by L.L. Grigsby (CRC Press, Boca Raton, 2007)
21.
Zurück zum Zitat R.L. Cresap, J.F. Hauer, Emergence of a new swing mode in the western power system. IEEE Trans. Power Apparatus Sys. PAS–100(4), 2037–2045 (1981)CrossRef R.L. Cresap, J.F. Hauer, Emergence of a new swing mode in the western power system. IEEE Trans. Power Apparatus Sys. PAS–100(4), 2037–2045 (1981)CrossRef
22.
Zurück zum Zitat Y. Chompoobutrgool, L. Vanfretti, Identification of power system dominant inter-area oscillation paths. IEEE Trans. Power Sys. (2012) Y. Chompoobutrgool, L. Vanfretti, Identification of power system dominant inter-area oscillation paths. IEEE Trans. Power Sys. (2012)
23.
Zurück zum Zitat L. Vanfretti, S. Bengtsson, V.H. Aarstrand, J.O. Gjerde, Applications of Spectral Analysis Techniques for Estimating the Nordic Grid’s Low Frequency Electromechanical Oscillations, in Proceedings of \(16{th}\) IFAC Symposium on System Identification (Brussel, Belgium, July 2012), pp. 11–13 L. Vanfretti, S. Bengtsson, V.H. Aarstrand, J.O. Gjerde, Applications of Spectral Analysis Techniques for Estimating the Nordic Grid’s Low Frequency Electromechanical Oscillations, in Proceedings of \(16{th}\) IFAC Symposium on System Identification (Brussel, Belgium, July 2012), pp. 11–13
24.
Zurück zum Zitat Y. Chompoobutrgool, W. Li, L. Vanfretti, Development and Implementation of a Nordic Grid Model for Power System Small-Signal and Transient Stability Studies in a Free and Open Source Software, in proceedings of IEEE PES General Meeting, July, 2012 Y. Chompoobutrgool, W. Li, L. Vanfretti, Development and Implementation of a Nordic Grid Model for Power System Small-Signal and Transient Stability Studies in a Free and Open Source Software, in proceedings of IEEE PES General Meeting, July, 2012
26.
Zurück zum Zitat Y. Chompoobutrgool, L. Vanfretti, Persistence of Multiple Interaction Paths for Individual Inter-Area Modes, in Proceedings of \(8{th}\) IFAC Symposium on Power Plants and Power Systems (Toulouse, France, Sep 2012), pp. 2–5 Y. Chompoobutrgool, L. Vanfretti, Persistence of Multiple Interaction Paths for Individual Inter-Area Modes, in Proceedings of \(8{th}\) IFAC Symposium on Power Plants and Power Systems (Toulouse, France, Sep 2012), pp. 2–5
27.
Zurück zum Zitat M.E. Aboul-Ela, A.A. Sallam, J.D. McCalley, A.A. Fouad, Damping controller design for power system oscillations using global signals. IEEE Trans. Power Sys. 11(2), 763–773 (1996)CrossRef M.E. Aboul-Ela, A.A. Sallam, J.D. McCalley, A.A. Fouad, Damping controller design for power system oscillations using global signals. IEEE Trans. Power Sys. 11(2), 763–773 (1996)CrossRef
28.
Zurück zum Zitat J.H. Chow, J.J. Sanchez-Gasca, H. Ren, S. Wang, Power system damping controller design using multiple input signals. IEEE Control Sys. Mag. pp. 82–90 (2000) J.H. Chow, J.J. Sanchez-Gasca, H. Ren, S. Wang, Power system damping controller design using multiple input signals. IEEE Control Sys. Mag. pp. 82–90 (2000)
29.
Zurück zum Zitat J.H. Chow, G.E. Boukarim, A. Murdoch, Power system stabilizers as undergraduate control design projects. IEEE Trans. Power Sys. 19(1), 144–151 (2004)CrossRef J.H. Chow, G.E. Boukarim, A. Murdoch, Power system stabilizers as undergraduate control design projects. IEEE Trans. Power Sys. 19(1), 144–151 (2004)CrossRef
30.
Zurück zum Zitat J.H. Chow, S. Ghiocel, An Adaptive Wide-Area Power System Damping Controller using Synchrophasor Data (Control and Optimization Methods for Electric Smart Grids, Springer Series in Power Electronics and Power Systems, 2012) J.H. Chow, S. Ghiocel, An Adaptive Wide-Area Power System Damping Controller using Synchrophasor Data (Control and Optimization Methods for Electric Smart Grids, Springer Series in Power Electronics and Power Systems, 2012)
Metadaten
Titel
Interarea Mode Analysis for Large Power Systems Using Synchrophasor Data
verfasst von
Luigi Vanfretti
Yuwa Chompoobutrgool
Joe H. Chow
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-1803-0_10