Skip to main content
Erschienen in: Journal of Materials Science 19/2021

23.03.2021 | Computation & theory

Interfacial interactions and enhanced optoelectronic properties of GaN/perovskite heterostructures: insight from first-principles calculations

verfasst von: Yao Guo, Yuanbin Xue, Lianqiang Xu

Erschienen in: Journal of Materials Science | Ausgabe 19/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we explored the structural, electronic, optical, and transport properties of the GaN/perovskite heterostructures using density functional theory combined with non-equilibrium Green’s function calculations. Four interfacial configurations have been studied, and the interfacial properties were discussed on the basis of the optimal theoretical situation. The Ga-polar N-termination interface was found to be the most favorable interfacial configuration, with an interfacial cohesive energy of 0.4 eV/Å2, whereas that of the other three heterostructures was less than 0.1 eV/Å2. Results showed that the interfacial nitrogen atoms had a significant impact on the structural stability and electronic properties via interfacial hybridizations. Furthermore, the influence of segregated dopants at the interface on device performance was also studied. The interfacial doping strategy proposed in this study demonstrated improved optoelectronic properties. Therefore, these results provide theoretical guidelines for developing high-performance of GaN/perovskite heterostructures in perovskite solar cells.

Graphical abstract

The atomic structure, electronic and optical properties of GaN (0001)/MAPbI3 (110) interfaces with a lattice mismatch less than 3% were analyzed using first-principles calculations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM (2015) Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347:519–522CrossRef Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM (2015) Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347:519–522CrossRef
2.
Zurück zum Zitat Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L (2017) Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat Commun 81:5330 Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L (2017) Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat Commun 81:5330
3.
Zurück zum Zitat Kim J, Chung C-H, Hong K-H (2016) Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites. Phys Chem Chem Phys 18:27143–27147CrossRef Kim J, Chung C-H, Hong K-H (2016) Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites. Phys Chem Chem Phys 18:27143–27147CrossRef
4.
Zurück zum Zitat Wang P, Wu Y, Cai B, Ma Q, Zheng X, Zhang W-H (2019) Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv Funct Mater 29:1807661CrossRef Wang P, Wu Y, Cai B, Ma Q, Zheng X, Zhang W-H (2019) Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv Funct Mater 29:1807661CrossRef
6.
Zurück zum Zitat Berhe TA, Su W-N, Chen C-H, Pan C-J, Cheng J-H, Chen H-M, Tsai M-C, Chen L-Y, Dubale AA, Hwang B-J (2016) Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci 9:323–356CrossRef Berhe TA, Su W-N, Chen C-H, Pan C-J, Cheng J-H, Chen H-M, Tsai M-C, Chen L-Y, Dubale AA, Hwang B-J (2016) Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci 9:323–356CrossRef
7.
Zurück zum Zitat Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3:8970–8980CrossRef Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3:8970–8980CrossRef
8.
Zurück zum Zitat Boyd CC, Cheacharoen R, Leijtens T, McGehee MD (2019) Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev 119:3418–3451CrossRef Boyd CC, Cheacharoen R, Leijtens T, McGehee MD (2019) Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev 119:3418–3451CrossRef
9.
Zurück zum Zitat Cho A-N, Park N-G (2017) Impact of interfacial layers in perovskite solar cells. Chemsuschem 10:3687–3704CrossRef Cho A-N, Park N-G (2017) Impact of interfacial layers in perovskite solar cells. Chemsuschem 10:3687–3704CrossRef
10.
Zurück zum Zitat Yang G, Tao H, Qin P, Ke W, Fang G (2016) Recent progress in electron transport layers for efficient perovskite solar cells. J Mater Chem A 4:3970–3990CrossRef Yang G, Tao H, Qin P, Ke W, Fang G (2016) Recent progress in electron transport layers for efficient perovskite solar cells. J Mater Chem A 4:3970–3990CrossRef
11.
Zurück zum Zitat Sekimoto T, Matsui T, Nishihara T, Uchida R, Sekiguchi T, Negami T (2019) Influence of a hole-transport layer on light-induced degradation of mixed organic-inorganic halide perovskite solar cells. ACS Appl Energ Mater 2:5039–5049CrossRef Sekimoto T, Matsui T, Nishihara T, Uchida R, Sekiguchi T, Negami T (2019) Influence of a hole-transport layer on light-induced degradation of mixed organic-inorganic halide perovskite solar cells. ACS Appl Energ Mater 2:5039–5049CrossRef
12.
Zurück zum Zitat Wang S, Liu B, Zhu Y, Ma Z, Liu B, Miao X, Ma R, Wang C (2018) Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer. Sol Energy 169:335–342CrossRef Wang S, Liu B, Zhu Y, Ma Z, Liu B, Miao X, Ma R, Wang C (2018) Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer. Sol Energy 169:335–342CrossRef
13.
Zurück zum Zitat Courtier NE, Cave JM, Foster JM, Walker AB, Richardson G (2019) How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energy Environ Sci 12:396–409CrossRef Courtier NE, Cave JM, Foster JM, Walker AB, Richardson G (2019) How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energy Environ Sci 12:396–409CrossRef
14.
Zurück zum Zitat Zhao Y, Zhang H, Ren X, Zhu HL, Huang Z, Ye F, Ouyang D, Cheah KW, Jen KY, Choy WCH (2018) Thick TiO2-based top electron transport layer on perovskite for highly efficient and stable solar cells. ACS Energy Lett 3:2891–2898CrossRef Zhao Y, Zhang H, Ren X, Zhu HL, Huang Z, Ye F, Ouyang D, Cheah KW, Jen KY, Choy WCH (2018) Thick TiO2-based top electron transport layer on perovskite for highly efficient and stable solar cells. ACS Energy Lett 3:2891–2898CrossRef
15.
Zurück zum Zitat Choi J, Song S, Hörantner MT, Snaith HJ, Park T (2016) Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells. ACS Nano 10:6029–6036CrossRef Choi J, Song S, Hörantner MT, Snaith HJ, Park T (2016) Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells. ACS Nano 10:6029–6036CrossRef
16.
Zurück zum Zitat Liu C, Cai M, Yang Y, Arain Z, Ding Y, Shi X, Shi P, Ma S, Hayat T, Alsaedi A, Wu J, Dai S, Cao G (2019) A C60/TiOx bilayer for conformal growth of perovskite films for UV stable perovskite solar cells. J Mater Chem A 7:11086–11094CrossRef Liu C, Cai M, Yang Y, Arain Z, Ding Y, Shi X, Shi P, Ma S, Hayat T, Alsaedi A, Wu J, Dai S, Cao G (2019) A C60/TiOx bilayer for conformal growth of perovskite films for UV stable perovskite solar cells. J Mater Chem A 7:11086–11094CrossRef
17.
Zurück zum Zitat Wilkes GC, Deng X, Choi JJ, Gupta MC (2018) Laser annealing of TiO2 electron-transporting layer in perovskite solar cells. ACS Appl Mater Interfaces 10:41312–41317CrossRef Wilkes GC, Deng X, Choi JJ, Gupta MC (2018) Laser annealing of TiO2 electron-transporting layer in perovskite solar cells. ACS Appl Mater Interfaces 10:41312–41317CrossRef
18.
Zurück zum Zitat Spalla M, Planes E, Perrin L, Matheron M, Berson S, Flandin L (2019) Alternative electron transport layer based on Al-Doped ZnO and SnO2 for perovskite solar cells: impact on microstructure and stability. ACS Appl Energ Mater 2:7183–7195CrossRef Spalla M, Planes E, Perrin L, Matheron M, Berson S, Flandin L (2019) Alternative electron transport layer based on Al-Doped ZnO and SnO2 for perovskite solar cells: impact on microstructure and stability. ACS Appl Energ Mater 2:7183–7195CrossRef
19.
Zurück zum Zitat Qiu Q, Liu H, Qin Y, Ren C, Song J (2020) Efficiency enhancement of perovskite solar cells based on Al2O3-passivated nano-nickel oxide film. J Mater Sci 55:13881–13891CrossRef Qiu Q, Liu H, Qin Y, Ren C, Song J (2020) Efficiency enhancement of perovskite solar cells based on Al2O3-passivated nano-nickel oxide film. J Mater Sci 55:13881–13891CrossRef
20.
Zurück zum Zitat Ma J, Lin Z, Guo X, Zhou L, Su J, Zhang C, Yang Z, Chang J, Liu S, Hao Y (2019) Low-temperature solution-processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20%. Sol RRL 3:1900096CrossRef Ma J, Lin Z, Guo X, Zhou L, Su J, Zhang C, Yang Z, Chang J, Liu S, Hao Y (2019) Low-temperature solution-processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20%. Sol RRL 3:1900096CrossRef
21.
Zurück zum Zitat Jeong S, Seo S, Park H, Shin H (2019) Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%. Chem Commun 55:2433–2436CrossRef Jeong S, Seo S, Park H, Shin H (2019) Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%. Chem Commun 55:2433–2436CrossRef
22.
Zurück zum Zitat Dong L, Pang T, Yu J, Wang Y, Zhu W, Zheng H, Yu J, Jia R, Chen Z (2019) Performance-enhanced solar-blind photodetector based on a CH3NH3PbI3/β-Ga2O3 hybrid structure. J Mater Chem C 7:14205–14211CrossRef Dong L, Pang T, Yu J, Wang Y, Zhu W, Zheng H, Yu J, Jia R, Chen Z (2019) Performance-enhanced solar-blind photodetector based on a CH3NH3PbI3/β-Ga2O3 hybrid structure. J Mater Chem C 7:14205–14211CrossRef
23.
Zurück zum Zitat Patil P, Mann DS, Nakate UT, Hahn Y-B, Kwon S-N, Na S-I (2020) Hybrid interfacial ETL engineering using PCBM-SnS2 for high-performance p-i-n structured planar perovskite solar cells. Chem Eng J 397:125504CrossRef Patil P, Mann DS, Nakate UT, Hahn Y-B, Kwon S-N, Na S-I (2020) Hybrid interfacial ETL engineering using PCBM-SnS2 for high-performance p-i-n structured planar perovskite solar cells. Chem Eng J 397:125504CrossRef
24.
Zurück zum Zitat Singh R, Giri A, Pal M, Thiyagarajan K, Kwak J, Lee J-J, Jeong U, Cho K (2019) Perovskite solar cells with an MoS2 electron transport layer. J Mater Chem A 7:7151–7158CrossRef Singh R, Giri A, Pal M, Thiyagarajan K, Kwak J, Lee J-J, Jeong U, Cho K (2019) Perovskite solar cells with an MoS2 electron transport layer. J Mater Chem A 7:7151–7158CrossRef
27.
Zurück zum Zitat Zhou H, Mei J, Xue M, Song Z, Wang H (2017) High-stability, self-powered perovskite photodetector based on a CH3NH3PbI3/GaN heterojunction with C60 as an electron transport layer. J Phys Chem C 121:21541–21545CrossRef Zhou H, Mei J, Xue M, Song Z, Wang H (2017) High-stability, self-powered perovskite photodetector based on a CH3NH3PbI3/GaN heterojunction with C60 as an electron transport layer. J Phys Chem C 121:21541–21545CrossRef
28.
Zurück zum Zitat Wang Y, Zheng D, Li L, Zhang Y (2018) Enhanced efficiency of flexible GaN/perovskite solar cells based on the piezo-phototronic effect. ACS Appl Energ Mater 1:3063–3069CrossRef Wang Y, Zheng D, Li L, Zhang Y (2018) Enhanced efficiency of flexible GaN/perovskite solar cells based on the piezo-phototronic effect. ACS Appl Energ Mater 1:3063–3069CrossRef
29.
Zurück zum Zitat Zhao L, Gao Y, Su M, Shang Q, Liu Z, Li Q, Wei Q, Li M, Fu L, Zhong Y, Shi J, Chen J, Zhao Y, Qiu X, Liu X, Tang N, Xing G, Wang X, Shen B, Zhang Q (2019) Vapor-phase incommensurate heteroepitaxy of oriented single-crystal CsPbBr3 on GaN: toward integrated optoelectronic applications. ACS Nano 13:10085–10094CrossRef Zhao L, Gao Y, Su M, Shang Q, Liu Z, Li Q, Wei Q, Li M, Fu L, Zhong Y, Shi J, Chen J, Zhao Y, Qiu X, Liu X, Tang N, Xing G, Wang X, Shen B, Zhang Q (2019) Vapor-phase incommensurate heteroepitaxy of oriented single-crystal CsPbBr3 on GaN: toward integrated optoelectronic applications. ACS Nano 13:10085–10094CrossRef
30.
Zurück zum Zitat Wei H, Wu J, Qiu P, Liu S, He Y, Peng M, Li D, Meng Q, Zaera F, Zheng X (2019) Plasma-enhanced atomic-layer-deposited gallium nitride as an electron transport layer for planar perovskite solar cells. J Mater Chem A 7:25347–25354CrossRef Wei H, Wu J, Qiu P, Liu S, He Y, Peng M, Li D, Meng Q, Zaera F, Zheng X (2019) Plasma-enhanced atomic-layer-deposited gallium nitride as an electron transport layer for planar perovskite solar cells. J Mater Chem A 7:25347–25354CrossRef
31.
Zurück zum Zitat Lim KTP, Deakin C, Ding B, Bai X, Griffin P, Zhu T, Oliver RA, Credgington D (2019) Encapsulation of methylammonium lead bromide perovskite in nanoporous GaN. APL Mater 7:021107CrossRef Lim KTP, Deakin C, Ding B, Bai X, Griffin P, Zhu T, Oliver RA, Credgington D (2019) Encapsulation of methylammonium lead bromide perovskite in nanoporous GaN. APL Mater 7:021107CrossRef
32.
Zurück zum Zitat Shao D, Zhu W, Xin G, Lian J, Sawyer S (2019) Inorganic vacancy-ordered perovskite Cs2SnCl6:Bi/GaN heterojunction photodiode for narrowband, visible-blind UV detection. Appl Phys Lett 115:121106CrossRef Shao D, Zhu W, Xin G, Lian J, Sawyer S (2019) Inorganic vacancy-ordered perovskite Cs2SnCl6:Bi/GaN heterojunction photodiode for narrowband, visible-blind UV detection. Appl Phys Lett 115:121106CrossRef
33.
Zurück zum Zitat Wierzbowska M (2020) Mechanism of segmentation of lead halide perovskite at interfaces with GaN and ZnO. Appl Surf Sci 514:145924CrossRef Wierzbowska M (2020) Mechanism of segmentation of lead halide perovskite at interfaces with GaN and ZnO. Appl Surf Sci 514:145924CrossRef
34.
Zurück zum Zitat Ergen O, Gilbert SM, Pham T, Turner Sally J, Tan Mark Tian Z, Worsley Marcus A, Zettl A (2017) Graded bandgap perovskite solar cells. Nat Mater 16:522–525CrossRef Ergen O, Gilbert SM, Pham T, Turner Sally J, Tan Mark Tian Z, Worsley Marcus A, Zettl A (2017) Graded bandgap perovskite solar cells. Nat Mater 16:522–525CrossRef
35.
Zurück zum Zitat Bonef B, Catalano M, Lund C, Denbaars SP, Nakamura S, Mishra UK, Kim MJ, Keller S (2017) Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive x-ray spectroscopy and atom probe tomography. Appl Phys Lett 110:143101CrossRef Bonef B, Catalano M, Lund C, Denbaars SP, Nakamura S, Mishra UK, Kim MJ, Keller S (2017) Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive x-ray spectroscopy and atom probe tomography. Appl Phys Lett 110:143101CrossRef
36.
Zurück zum Zitat Duff AI, Lymperakis L, Neugebauer J (2014) Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces: an ab initio approach. Phys Rev B 89:085307CrossRef Duff AI, Lymperakis L, Neugebauer J (2014) Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces: an ab initio approach. Phys Rev B 89:085307CrossRef
37.
Zurück zum Zitat Liu X, Ji D, Lu Y (2015) Scattering induced by Al segregation in AlGaN/GaN heterostructures. Appl Phys Lett 107:072105CrossRef Liu X, Ji D, Lu Y (2015) Scattering induced by Al segregation in AlGaN/GaN heterostructures. Appl Phys Lett 107:072105CrossRef
38.
Zurück zum Zitat Guo Y, Xue Y, Li X, Li C, Song H, Niu Y, Liu H, Mai X, Zhang J, Guo Z (2019) Effects of transition metal substituents on interfacial and electronic structure of CH3NH3PbI3/TiO2 interface: a first-principles comparative study. Nanomaterials 9:966CrossRef Guo Y, Xue Y, Li X, Li C, Song H, Niu Y, Liu H, Mai X, Zhang J, Guo Z (2019) Effects of transition metal substituents on interfacial and electronic structure of CH3NH3PbI3/TiO2 interface: a first-principles comparative study. Nanomaterials 9:966CrossRef
39.
Zurück zum Zitat Feng H-J, Paudel TR, Tsymbal EY, Zeng XC (2015) Tunable optical properties and charge separation in CH3NH3SnxPb1–xI3/TiO2-based planar perovskites cells. J Am Chem Soc 137:8227–8236CrossRef Feng H-J, Paudel TR, Tsymbal EY, Zeng XC (2015) Tunable optical properties and charge separation in CH3NH3SnxPb1–xI3/TiO2-based planar perovskites cells. J Am Chem Soc 137:8227–8236CrossRef
40.
Zurück zum Zitat Shu H, Niu XH, Ding XJ, Wang Y (2019) Effects of strain and surface modification on stability, electronic and optical properties of GaN monolayer. Appl Surf Sci 479:475–481CrossRef Shu H, Niu XH, Ding XJ, Wang Y (2019) Effects of strain and surface modification on stability, electronic and optical properties of GaN monolayer. Appl Surf Sci 479:475–481CrossRef
41.
Zurück zum Zitat Shu H (2020) Structural stability, tunable electronic and optical properties of two-dimensional WS2 and GaN heterostructure: First-principles calculations. Mater Sci Eng B 261:114672CrossRef Shu H (2020) Structural stability, tunable electronic and optical properties of two-dimensional WS2 and GaN heterostructure: First-principles calculations. Mater Sci Eng B 261:114672CrossRef
42.
Zurück zum Zitat Shu H, Zhao M, Sun M (2019) Theoretical Study of GaN/BP van der Waals nanocomposites with strain-enhanced electronic and optical properties for optoelectronic applications. ACS Appl Nano Mater 2:6482–6491CrossRef Shu H, Zhao M, Sun M (2019) Theoretical Study of GaN/BP van der Waals nanocomposites with strain-enhanced electronic and optical properties for optoelectronic applications. ACS Appl Nano Mater 2:6482–6491CrossRef
43.
Zurück zum Zitat Abdulraheem Z, Jappor HR (2020) Tailoring the electronic and optical properties of SnSe2/InS van der Waals heterostructures by the biaxial strains. Phys Lett A 384:126090CrossRef Abdulraheem Z, Jappor HR (2020) Tailoring the electronic and optical properties of SnSe2/InS van der Waals heterostructures by the biaxial strains. Phys Lett A 384:126090CrossRef
44.
Zurück zum Zitat Almayyali AOM, Kadhim BB, Jappor HR (2020) Stacking impact on the optical and electronic properties of two-dimensional MoSe2/PtS2 heterostructures formed by PtS2 and MoSe2 monolayers. Chem Phys 532:110679CrossRef Almayyali AOM, Kadhim BB, Jappor HR (2020) Stacking impact on the optical and electronic properties of two-dimensional MoSe2/PtS2 heterostructures formed by PtS2 and MoSe2 monolayers. Chem Phys 532:110679CrossRef
45.
Zurück zum Zitat Almayyali AOM, Kadhim BB, Jappor HR (2020) Tunable electronic and optical properties of 2D PtS2/MoS2 van der Waals heterostructure. Physica E 118:113866CrossRef Almayyali AOM, Kadhim BB, Jappor HR (2020) Tunable electronic and optical properties of 2D PtS2/MoS2 van der Waals heterostructure. Physica E 118:113866CrossRef
46.
Zurück zum Zitat Abed Al-Abbas SS, Muhsin MK, Jappor HR (2019) Two-dimensional GaTe monolayer as a potential gas sensor for SO2 and NO2 with discriminate optical properties. Superlattices Microstruct 135:106245CrossRef Abed Al-Abbas SS, Muhsin MK, Jappor HR (2019) Two-dimensional GaTe monolayer as a potential gas sensor for SO2 and NO2 with discriminate optical properties. Superlattices Microstruct 135:106245CrossRef
47.
Zurück zum Zitat Attia AA, Jappor HR (2019) Tunable electronic and optical properties of new two-dimensional GaN/BAs van der Waals heterostructures with the potential for photovoltaic applications. Chem Phys Lett 728:124–131CrossRef Attia AA, Jappor HR (2019) Tunable electronic and optical properties of new two-dimensional GaN/BAs van der Waals heterostructures with the potential for photovoltaic applications. Chem Phys Lett 728:124–131CrossRef
48.
Zurück zum Zitat Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50CrossRef Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50CrossRef
49.
Zurück zum Zitat Wimmer E, Christensen M, Eyert V, Wolf W, Reith D, Rozanska X, Freeman C, Saxe P (2016) Computational materials engineering: recent applications of VASP in the MedeA® software environment. J Korean Ceram Soc 53:263–272CrossRef Wimmer E, Christensen M, Eyert V, Wolf W, Reith D, Rozanska X, Freeman C, Saxe P (2016) Computational materials engineering: recent applications of VASP in the MedeA® software environment. J Korean Ceram Soc 53:263–272CrossRef
50.
Zurück zum Zitat Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRef Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRef
51.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
52.
Zurück zum Zitat Pack JD, Monkhorst HJ (1977) “Special points for Brillouin-zone integrations”-a reply. Phys Rev B 16:1748–1749CrossRef Pack JD, Monkhorst HJ (1977) “Special points for Brillouin-zone integrations”-a reply. Phys Rev B 16:1748–1749CrossRef
53.
Zurück zum Zitat Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621CrossRef Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621CrossRef
54.
Zurück zum Zitat Caldeweyher E, Bannwarth C, Grimme S (2017) Extension of the D3 dispersion coefficient model. J Chem Phys 147:034112CrossRef Caldeweyher E, Bannwarth C, Grimme S (2017) Extension of the D3 dispersion coefficient model. J Chem Phys 147:034112CrossRef
55.
Zurück zum Zitat Neugebauer J, Scheffler M (1992) Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys Rev B 46:16067–16080CrossRef Neugebauer J, Scheffler M (1992) Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys Rev B 46:16067–16080CrossRef
56.
Zurück zum Zitat Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov PA, Vej-Hansen UG, Lee M-E, Chill ST, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard MLN, Martinez U, Blom A, Brandbyge M, Stokbro K (2019) QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J Phys: Condens Matter 32:015901 Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov PA, Vej-Hansen UG, Lee M-E, Chill ST, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard MLN, Martinez U, Blom A, Brandbyge M, Stokbro K (2019) QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J Phys: Condens Matter 32:015901
57.
Zurück zum Zitat Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys: Condens Matter 14:2745–2779 Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys: Condens Matter 14:2745–2779
58.
Zurück zum Zitat van Setten MJ, Giantomassi M, Bousquet E, Verstraete MJ, Hamann DR, Gonze X, Rignanese GM (2018) The PseudoDojo: training and grading A 85 element optimized norm-conserving pseudopotential table. Comput Phys Commun 226:39–54CrossRef van Setten MJ, Giantomassi M, Bousquet E, Verstraete MJ, Hamann DR, Gonze X, Rignanese GM (2018) The PseudoDojo: training and grading A 85 element optimized norm-conserving pseudopotential table. Comput Phys Commun 226:39–54CrossRef
59.
Zurück zum Zitat Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658CrossRef Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658CrossRef
60.
Zurück zum Zitat Mosconi E, Ronca E, Angelis De (2014) F First-principles investigation of the TiO2/Organohalide perovskites interface: the role of interfacial chlorine. J Phys Chem Lett 5:2619–2625CrossRef Mosconi E, Ronca E, Angelis De (2014) F First-principles investigation of the TiO2/Organohalide perovskites interface: the role of interfacial chlorine. J Phys Chem Lett 5:2619–2625CrossRef
61.
Zurück zum Zitat Haruyama J, Sodeyama K, Han L, Tateyama Y (2016) Surface properties of CH3NH3PbI3 for perovskite solar cells. Acc Chem Res 49:554–561CrossRef Haruyama J, Sodeyama K, Han L, Tateyama Y (2016) Surface properties of CH3NH3PbI3 for perovskite solar cells. Acc Chem Res 49:554–561CrossRef
Metadaten
Titel
Interfacial interactions and enhanced optoelectronic properties of GaN/perovskite heterostructures: insight from first-principles calculations
verfasst von
Yao Guo
Yuanbin Xue
Lianqiang Xu
Publikationsdatum
23.03.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06014-w

Weitere Artikel der Ausgabe 19/2021

Journal of Materials Science 19/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.