Skip to main content
Erschienen in: Cellulose 4/2014

01.08.2014 | Original Paper

Internally dispersed synthesis of uniform silver nanoparticles via in situ reduction of [Ag(NH3)2]+ along natural microfibrillar substructures of cotton fiber

verfasst von: Sunghyun Nam, Brian D. Condon

Erschienen in: Cellulose | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Silver nanoparticles (Ag NPs) are known to have efficient antimicrobial properties, but the direct application of Ag NPs onto the surface of textiles has shown to be ineffective and raise environmental concerns because Ag NPs leach out during washing. In this study, non-leaching and stable Ag-cotton nanocomposite fiber was produced by the in situ formation of Ag NPs inside the cotton fiber. The reported method is to introduce a nanofluidic system in alkali-swollen cotton fiber. Sequential flows of [Ag(NH3)2]+ and reductant aqueous fluids into the opened microfibrillar channels yielded a self-assembly of Ag ions on the deprotonated cellulose and subsequent nucleation and particle growth on the microfibrils. Transmission electron and field emission scanning electron microscopy images showed Ag NPs evenly dispersed throughout the entire cross-section of the fiber and their fixation onto the isolated secondary cell wall, respectively. Despite the rapid reduction reaction and the absence of a stabilizing agent, the successful formation of monodispersed Ag NPs (12 ± 3 nm) was attributed to the self-controlled function of the highly organized microfibrillar substructures, which regulated the transport and mixing of reactants. Incorporation of Ag NPs into the internal structure of the cotton fiber did not significantly influence the cotton crystalline structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abou-Hassan A, Sandre O, Cabuil V (2010) Microfluidics in inorganic chemistry. Angew Chem Int Ed 49:6268–6286CrossRef Abou-Hassan A, Sandre O, Cabuil V (2010) Microfluidics in inorganic chemistry. Angew Chem Int Ed 49:6268–6286CrossRef
Zurück zum Zitat Azubuike CP, Rodrı´guez H, Okhamafe AO, Rogers RD (2012) Physicochemical properties of maize cob cellulose powders reconstituted from ionic liquid solution. Cellulose 19:425–433CrossRef Azubuike CP, Rodrı´guez H, Okhamafe AO, Rogers RD (2012) Physicochemical properties of maize cob cellulose powders reconstituted from ionic liquid solution. Cellulose 19:425–433CrossRef
Zurück zum Zitat Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139CrossRef Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139CrossRef
Zurück zum Zitat Boylston EK, Hinojosa O, Hebert JJ (1991) A quick embedding method for light and electron microscopy of textile fibers. Biotech Histochem 66:122–124CrossRef Boylston EK, Hinojosa O, Hebert JJ (1991) A quick embedding method for light and electron microscopy of textile fibers. Biotech Histochem 66:122–124CrossRef
Zurück zum Zitat Cabeza VS, Kuhn S, Kulkarni AA, Jensen KF (2012) Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform. Langmuir 28:7007–7013CrossRef Cabeza VS, Kuhn S, Kulkarni AA, Jensen KF (2012) Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform. Langmuir 28:7007–7013CrossRef
Zurück zum Zitat Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619CrossRef Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619CrossRef
Zurück zum Zitat Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588CrossRef Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588CrossRef
Zurück zum Zitat DeMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394CrossRef DeMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394CrossRef
Zurück zum Zitat Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47:4140–4146CrossRef Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47:4140–4146CrossRef
Zurück zum Zitat Dong H, Hinestroza JP (2009) Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis. ACS Appl Mater Interfaces 1:797–803CrossRef Dong H, Hinestroza JP (2009) Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis. ACS Appl Mater Interfaces 1:797–803CrossRef
Zurück zum Zitat Dror-Ehre A, Mamane H, Belenkova T, Markovich G, Adin A (2009) Silver nanoparticle-E. coli collodial interaction in water and effect on E. coli survival. J Colloid Interface Sci 339:521–526CrossRef Dror-Ehre A, Mamane H, Belenkova T, Markovich G, Adin A (2009) Silver nanoparticle-E. coli collodial interaction in water and effect on E. coli survival. J Colloid Interface Sci 339:521–526CrossRef
Zurück zum Zitat El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287CrossRef El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287CrossRef
Zurück zum Zitat Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6CrossRef Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6CrossRef
Zurück zum Zitat Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRef Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRef
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
Zurück zum Zitat French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588CrossRef French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588CrossRef
Zurück zum Zitat Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001CrossRef Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001CrossRef
Zurück zum Zitat Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nano textiles during washing. Environ Sci Technol 43:8113–8118CrossRef Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nano textiles during washing. Environ Sci Technol 43:8113–8118CrossRef
Zurück zum Zitat Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64:5042–5045 Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64:5042–5045
Zurück zum Zitat He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406CrossRef He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406CrossRef
Zurück zum Zitat Hessel V, Lowe H, Schonfeld F (2005) Micromixers-a review on passive and active mixing principles. Chem Eng Sci 60:2479CrossRef Hessel V, Lowe H, Schonfeld F (2005) Micromixers-a review on passive and active mixing principles. Chem Eng Sci 60:2479CrossRef
Zurück zum Zitat Jiang X, Zeng Q, Yu A (2007) Thiol-frozen shape evolution of triangular silver nanoplates. Langmuir 23:2218–2223CrossRef Jiang X, Zeng Q, Yu A (2007) Thiol-frozen shape evolution of triangular silver nanoplates. Langmuir 23:2218–2223CrossRef
Zurück zum Zitat Kelly FM, Johnston JH (2011) Colored and functional silver nanoparticle-wool fiber composites. ACS Appl Mater Interfaces 3:1083–1092CrossRef Kelly FM, Johnston JH (2011) Colored and functional silver nanoparticle-wool fiber composites. ACS Appl Mater Interfaces 3:1083–1092CrossRef
Zurück zum Zitat Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin, HeidelbergCrossRef Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin, HeidelbergCrossRef
Zurück zum Zitat Kreutzer MT, Gunther A, Jensen KF (2008) Sample dispersion for segmented flow in microchannels with rectangular cross section. Anal Chem 80:1558–1567CrossRef Kreutzer MT, Gunther A, Jensen KF (2008) Sample dispersion for segmented flow in microchannels with rectangular cross section. Anal Chem 80:1558–1567CrossRef
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416CrossRef Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416CrossRef
Zurück zum Zitat Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113CrossRef Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113CrossRef
Zurück zum Zitat Lee HJ, Yeo SY, Jeong SH (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38:2199–2204CrossRef Lee HJ, Yeo SY, Jeong SH (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38:2199–2204CrossRef
Zurück zum Zitat Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 28:2959–2961CrossRef Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 28:2959–2961CrossRef
Zurück zum Zitat Lin XZ, Terepka AD, Yang H (2004) Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett 4:2227–2232CrossRef Lin XZ, Terepka AD, Yang H (2004) Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett 4:2227–2232CrossRef
Zurück zum Zitat Liu JY, Hurt RH (2010) Ion release kinetics and particle persistance in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175CrossRef Liu JY, Hurt RH (2010) Ion release kinetics and particle persistance in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175CrossRef
Zurück zum Zitat Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924CrossRef Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924CrossRef
Zurück zum Zitat Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534CrossRef Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534CrossRef
Zurück zum Zitat Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39:1183CrossRef Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39:1183CrossRef
Zurück zum Zitat Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bacterial action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281CrossRef Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bacterial action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281CrossRef
Zurück zum Zitat Montazer M, Allahyarzadeh V (2013) Electroless plating of silver nanoparticles/nanolayer on polyester fabric using AgNO3/NaOH and ammonia. Ind Eng Chem Res 52:8436–8444CrossRef Montazer M, Allahyarzadeh V (2013) Electroless plating of silver nanoparticles/nanolayer on polyester fabric using AgNO3/NaOH and ammonia. Ind Eng Chem Res 52:8436–8444CrossRef
Zurück zum Zitat Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRef Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRef
Zurück zum Zitat Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol JF (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301 Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol JF (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301
Zurück zum Zitat Park M, Im J, Shin M, Min Y, Park J, Cho H, Park S, Shim MB, Jeon S, Chung DY, Bae J, Park J, Jeong U, Kim K (2012a) Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat Nanotechnol 7:803–809CrossRef Park M, Im J, Shin M, Min Y, Park J, Cho H, Park S, Shim MB, Jeon S, Chung DY, Bae J, Park J, Jeong U, Kim K (2012a) Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat Nanotechnol 7:803–809CrossRef
Zurück zum Zitat Park SY, Chung JW, Priestley RD, Kwak SY (2012b) Covalent assembly of metal nanoparticles on cellulose fabric and its antimicrobial activity. Cellulose 19:2141–2151CrossRef Park SY, Chung JW, Priestley RD, Kwak SY (2012b) Covalent assembly of metal nanoparticles on cellulose fabric and its antimicrobial activity. Cellulose 19:2141–2151CrossRef
Zurück zum Zitat Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19:245705–245711CrossRef Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19:245705–245711CrossRef
Zurück zum Zitat Qin Y, Ji X, Jing J, Liu H, Wu H, Yang W (2010) Size control over spherical silver nanoparticles by ascorbic reduction. Colloids Surf A 372:172–176CrossRef Qin Y, Ji X, Jing J, Liu H, Wu H, Yang W (2010) Size control over spherical silver nanoparticles by ascorbic reduction. Colloids Surf A 372:172–176CrossRef
Zurück zum Zitat Rance GA, Khlobystov AN (2010) Nanoparticle-nanotube electrostatic interactions in solution: the effect of pH and ionic strength. Phys Chem Chem Phys 12:10775–10780CrossRef Rance GA, Khlobystov AN (2010) Nanoparticle-nanotube electrostatic interactions in solution: the effect of pH and ionic strength. Phys Chem Chem Phys 12:10775–10780CrossRef
Zurück zum Zitat Sarko A, Muggli R (1974) Packing analysis of carbohydrates and polysaccharides. III: valonia cellulose and cellulose II. Macromolecules 7:486–494CrossRef Sarko A, Muggli R (1974) Packing analysis of carbohydrates and polysaccharides. III: valonia cellulose and cellulose II. Macromolecules 7:486–494CrossRef
Zurück zum Zitat Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100 Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100
Zurück zum Zitat Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text Res J 29:786–794CrossRef
Zurück zum Zitat Shalom D, Wootton RCR, Winkle RF, Cottam BF, Vilar R, deMello AJ, Wilde CP (2007) Synthesis of thiol functionalized gold nanoparticles using a continuous flow microfluidic reactor. Mater Lett 61:1146–1150CrossRef Shalom D, Wootton RCR, Winkle RF, Cottam BF, Vilar R, deMello AJ, Wilde CP (2007) Synthesis of thiol functionalized gold nanoparticles using a continuous flow microfluidic reactor. Mater Lett 61:1146–1150CrossRef
Zurück zum Zitat Shastri JP, Rupani MG, Jain RL (2012) Antimicrobial activity of nanosilver-coated socks fabrics against foot pathogens. J Text Inst 103:1234–1243CrossRef Shastri JP, Rupani MG, Jain RL (2012) Antimicrobial activity of nanosilver-coated socks fabrics against foot pathogens. J Text Inst 103:1234–1243CrossRef
Zurück zum Zitat Shateri Khalil-Abad M, Yazdanshenas ME, Nateghi MR (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16:1147–1157CrossRef Shateri Khalil-Abad M, Yazdanshenas ME, Nateghi MR (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16:1147–1157CrossRef
Zurück zum Zitat Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Avalos-Borja M, Castillon-Barraza FF, Posada-Amarillas A (2005) Assessment of growth of silver nanoparticles synthesized from an ethylene glycol-silver nitrate-polyvinylpyrrolidone solution. Phys E 25:438–448CrossRef Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Avalos-Borja M, Castillon-Barraza FF, Posada-Amarillas A (2005) Assessment of growth of silver nanoparticles synthesized from an ethylene glycol-silver nitrate-polyvinylpyrrolidone solution. Phys E 25:438–448CrossRef
Zurück zum Zitat Sondi I, Goia DV, Matijevic E (2003) Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J Colloid Interface Sci 260:75–81CrossRef Sondi I, Goia DV, Matijevic E (2003) Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J Colloid Interface Sci 260:75–81CrossRef
Zurück zum Zitat Song Y, Kumar CS, Hormes J (2004) Synthesis of palladium nanoparticles using a continuous flow polymeric microreactor. J Nanosci Nanotechnol 4:788CrossRef Song Y, Kumar CS, Hormes J (2004) Synthesis of palladium nanoparticles using a continuous flow polymeric microreactor. J Nanosci Nanotechnol 4:788CrossRef
Zurück zum Zitat Tang B, Zhang M, Hou X, Li J, Sun L, Wang X (2012) Coloration of cotton fibers with anisotropic silver nanoparticles. Ind Eng Chem Res 51:12807–12813CrossRef Tang B, Zhang M, Hou X, Li J, Sun L, Wang X (2012) Coloration of cotton fibers with anisotropic silver nanoparticles. Ind Eng Chem Res 51:12807–12813CrossRef
Zurück zum Zitat Thibodeaux DP, Evans JP (1986) Cotton fiber maturity by image analysis. Text Res J 56:130–139CrossRef Thibodeaux DP, Evans JP (1986) Cotton fiber maturity by image analysis. Text Res J 56:130–139CrossRef
Zurück zum Zitat Tsunoyama H, Ichikuni N, Tsukuda T (2008) Microfludic synthesis and catalytic application of PVP-stabilized—1 nm gold clusters. Langmuir 24:11327–11330CrossRef Tsunoyama H, Ichikuni N, Tsukuda T (2008) Microfludic synthesis and catalytic application of PVP-stabilized—1 nm gold clusters. Langmuir 24:11327–11330CrossRef
Zurück zum Zitat Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007) Functional finishing of cotton fabrics using silver nanoparticles. J Nanosci Nanotechnol 7:1893–1897CrossRef Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007) Functional finishing of cotton fabrics using silver nanoparticles. J Nanosci Nanotechnol 7:1893–1897CrossRef
Zurück zum Zitat Wagner J, Kohler JM (2005) Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett 5:685–691CrossRef Wagner J, Kohler JM (2005) Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett 5:685–691CrossRef
Metadaten
Titel
Internally dispersed synthesis of uniform silver nanoparticles via in situ reduction of [Ag(NH3)2]+ along natural microfibrillar substructures of cotton fiber
verfasst von
Sunghyun Nam
Brian D. Condon
Publikationsdatum
01.08.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-014-0270-y

Weitere Artikel der Ausgabe 4/2014

Cellulose 4/2014 Zur Ausgabe