Skip to main content
Erschienen in: Journal of Electronic Materials 12/2023

18.09.2023 | Original Research Article

Introduction Rates of Electrically Active Radiation Defects in Proton Irradiated n-Type and p-Type Si Monocrystals

verfasst von: Vachagan Harutyunyan, Aram Sahakyan, Andranik Manukyan, Bagrat Grigoryan, Hakob Davtyan, Ashot Vardanyan, Christopher J. Rhodes, Vika Arzumanyan

Erschienen in: Journal of Electronic Materials | Ausgabe 12/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The introduction rates of electrically active radiation defects \(\Delta N_{{{\text{def}}}} /\Delta \Phi\) were studied as a function of 15.5 MeV energy proton radiation fluence \(\left( \Phi \right)\) in n-type and p-type Si semiconductor crystals. The concentration of electrically active radiation defects \( N_{{{\text{def}}}}\) was determined as the difference between the charge carrier concentration before \(n_{0}\) and after \(n\left( \Phi \right) \) irradiation, at room temperature. It was demonstrated that the concentration of electrically active radiation defects in silicon crystals produced by proton irradiation can be described by an empirical exponential function. The experimental results show that the introduction rate of electrically active radiation defects depends on the initial sample parameters, and during the initial phase of irradiation by protons it is significantly higher than that for 3.5 MeV energy electron irradiation. It was shown that samples with a low introduction rate of radiation defects are more resistant to the effects of particle irradiation. The charge carrier mobility in both n-type and p-type silicon crystals changes slightly as a result of proton irradiation, in contrast to the significant decreases observed under conditions of electron irradiation. In the case of proton irradiation, the resistivity of n-type and p-type silicon crystals increases exponentially with the level of radiation fluence.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Siffert, and E.F. Krimmel, Silicon: Evolution and Future of a Technology, 1st ed., (Berlin, Heidelberg: Springer, 2004).CrossRef P. Siffert, and E.F. Krimmel, Silicon: Evolution and Future of a Technology, 1st ed., (Berlin, Heidelberg: Springer, 2004).CrossRef
8.
Zurück zum Zitat V.V. Emtsev, A.M. Ivanov, V.V. Kozlovski, A.A. Lebedev, G.A. Oganesyan, N.B. Strokan, and G. Wagner, Similarities and distinctions of defect production by fast electron and proton irradiation: moderately doped silicon and silicon carbide of n-type. Semiconductors 46, 456 (2012). https://doi.org/10.1134/S1063782612040069.CrossRef V.V. Emtsev, A.M. Ivanov, V.V. Kozlovski, A.A. Lebedev, G.A. Oganesyan, N.B. Strokan, and G. Wagner, Similarities and distinctions of defect production by fast electron and proton irradiation: moderately doped silicon and silicon carbide of n-type. Semiconductors 46, 456 (2012). https://​doi.​org/​10.​1134/​S106378261204006​9.CrossRef
14.
Zurück zum Zitat C. Leroy, and P.-G. Rancoita, Particle interaction and displacement damage in silicon devices operated in radiation environments. Rep. Prog. Phys. 70, 493 (2007).CrossRef C. Leroy, and P.-G. Rancoita, Particle interaction and displacement damage in silicon devices operated in radiation environments. Rep. Prog. Phys. 70, 493 (2007).CrossRef
15.
Zurück zum Zitat M. Kuhnke, E. Fretwurst, and G. Lindstroem, Defect generation in crystalline silicon irradiated with high energy particles. Nucl. Instrum. Methods Phys. Res. Sect. B 186, 144 (2002).CrossRef M. Kuhnke, E. Fretwurst, and G. Lindstroem, Defect generation in crystalline silicon irradiated with high energy particles. Nucl. Instrum. Methods Phys. Res. Sect. B 186, 144 (2002).CrossRef
16.
Zurück zum Zitat I. Smirnov, I. Dyachkova, and E. Novoselova, High resolution X-ray diffraction study of proton irradiated silicon crystals. Mod. Electron. Mater. 2, 29 (2016).CrossRef I. Smirnov, I. Dyachkova, and E. Novoselova, High resolution X-ray diffraction study of proton irradiated silicon crystals. Mod. Electron. Mater. 2, 29 (2016).CrossRef
17.
Zurück zum Zitat Y. Funtikov, L. Dubov, Y. Shtotsky, and S. Stepanov, Radiation-induced defects in Si after high dose proton irradiation. Defect Diffus. Forum 373, 209 (2017).CrossRef Y. Funtikov, L. Dubov, Y. Shtotsky, and S. Stepanov, Radiation-induced defects in Si after high dose proton irradiation. Defect Diffus. Forum 373, 209 (2017).CrossRef
19.
Zurück zum Zitat T. Pagava and L. Chkhartishvili, Radiation defects nano-scale inhomogeneous distribution influence on apparent hall mobility in silicon. Nano Res Appl. 03(03) (2017). T. Pagava and L. Chkhartishvili, Radiation defects nano-scale inhomogeneous distribution influence on apparent hall mobility in silicon. Nano Res Appl. 03(03) (2017).
20.
Zurück zum Zitat N. Bogatov, L. Grigoryan, A. Klenevsky, M. Kovalenko, and I. Nesterenko, Modelling of disordering regions in proton-irradiated silicon. J. Phys. Conf. Ser. 1553, 012015 (2020).CrossRef N. Bogatov, L. Grigoryan, A. Klenevsky, M. Kovalenko, and I. Nesterenko, Modelling of disordering regions in proton-irradiated silicon. J. Phys. Conf. Ser. 1553, 012015 (2020).CrossRef
21.
Zurück zum Zitat H. Yeritsyan, A. Sahakyan, N. Grigoryan, V. Harutunyan, V. Sahakyan, and A. Khachatryan, Clusters of radiation defects in silicon crystals. J. Mod. Phys. 6, 1270 (2015).CrossRef H. Yeritsyan, A. Sahakyan, N. Grigoryan, V. Harutunyan, V. Sahakyan, and A. Khachatryan, Clusters of radiation defects in silicon crystals. J. Mod. Phys. 6, 1270 (2015).CrossRef
22.
Zurück zum Zitat P.F. Lugakov, and I.M. Filippov, Radiation defect clusters in electron-irradiated silicon. Radiat. Eff. 90, 297 (1985).CrossRef P.F. Lugakov, and I.M. Filippov, Radiation defect clusters in electron-irradiated silicon. Radiat. Eff. 90, 297 (1985).CrossRef
23.
24.
Zurück zum Zitat H. Yeritsyan, A. Sahakyan, N. Grigoryan, E. Hakhverdyan, V. Harutunyan, V. Sahakyan, A. Khachatryan, B. Grigoryan, V. Avagyan, G. Amatuni, and A. Vardanyan, The influence of pico-second pulse electron irradiation on the electrical-physical properties of silicon crystals. J. Mod. Phys. 7, 1413 (2016). https://doi.org/10.4236/jmp.2016.712128.CrossRef H. Yeritsyan, A. Sahakyan, N. Grigoryan, E. Hakhverdyan, V. Harutunyan, V. Sahakyan, A. Khachatryan, B. Grigoryan, V. Avagyan, G. Amatuni, and A. Vardanyan, The influence of pico-second pulse electron irradiation on the electrical-physical properties of silicon crystals. J. Mod. Phys. 7, 1413 (2016). https://​doi.​org/​10.​4236/​jmp.​2016.​712128.CrossRef
25.
Zurück zum Zitat N. Bogatov, L. Grigoryan, A. Klenevsky, M. Kovalenko, and I. Nesterenko, Formation of primary radiation defects in a non-equilibrium silicon structure by electron irradiation. J. Phys. Conf. Ser. 1679, 032077 (2020).CrossRef N. Bogatov, L. Grigoryan, A. Klenevsky, M. Kovalenko, and I. Nesterenko, Formation of primary radiation defects in a non-equilibrium silicon structure by electron irradiation. J. Phys. Conf. Ser. 1679, 032077 (2020).CrossRef
Metadaten
Titel
Introduction Rates of Electrically Active Radiation Defects in Proton Irradiated n-Type and p-Type Si Monocrystals
verfasst von
Vachagan Harutyunyan
Aram Sahakyan
Andranik Manukyan
Bagrat Grigoryan
Hakob Davtyan
Ashot Vardanyan
Christopher J. Rhodes
Vika Arzumanyan
Publikationsdatum
18.09.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 12/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10700-7

Weitere Artikel der Ausgabe 12/2023

Journal of Electronic Materials 12/2023 Zur Ausgabe

Neuer Inhalt