Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

1. Introduction to Hard Materials and Machining Methods

verfasst von : Manjunath Patel G. C., Ganesh R. Chate, Mahesh B. Parappagoudar, Kapil Gupta

Erschienen in: Machining of Hard Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machining is most widely used to transform the material into the product of desired shape and size by the mechanism of removing excess material. Machining involves group of processes, wherein the excess material is removed from the work specimen in sequential steps with the help of cutting tools (either single point or multi-point). It is to be noted that machining with a single-point cutting tool uses well-defined tool geometry (i.e. cutting edges (honed, sharp, chamfered) possessing different faces (rake, flank, etc.)), whereas grinding process uses abrasive wheel with multi-point micro-cutting edges having undefined geometry [13].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.V. Stabler, The fundamental geometry of cutting tools. Proc. Inst. Mech. Eng. 165(1), 14–26 (1951)CrossRef G.V. Stabler, The fundamental geometry of cutting tools. Proc. Inst. Mech. Eng. 165(1), 14–26 (1951)CrossRef
2.
Zurück zum Zitat J.P. Davim (ed.), Traditional Machining Processes: Research Advances (Springer, 2014) J.P. Davim (ed.), Traditional Machining Processes: Research Advances (Springer, 2014)
3.
Zurück zum Zitat V.P. Astakhov, Geometry of Single-Point Turning Tools and Drills: Fundamentals and Practical Applications (Springer Science & Business Media, 2010) V.P. Astakhov, Geometry of Single-Point Turning Tools and Drills: Fundamentals and Practical Applications (Springer Science & Business Media, 2010)
4.
Zurück zum Zitat J.P. Davim (ed.), Machining: Fundamentals and Recent Advances (Springer Science & Business Media, 2008) J.P. Davim (ed.), Machining: Fundamentals and Recent Advances (Springer Science & Business Media, 2008)
5.
Zurück zum Zitat R.B.D. Pereira, C.H. Lauro, L.C. Brandão, J.R. Ferreira, J.P. Davim, Tool wear in dry helical milling for hole-making in AISI H13 hardened steel. Int. J. Adv. Manuf. Technol. 101(9–12), 2425–2439 (2018) R.B.D. Pereira, C.H. Lauro, L.C. Brandão, J.R. Ferreira, J.P. Davim, Tool wear in dry helical milling for hole-making in AISI H13 hardened steel. Int. J. Adv. Manuf. Technol. 101(9–12), 2425–2439 (2018)
6.
Zurück zum Zitat J. Vivancos, C.J. Luis, L. Costa, J.A. Ortız, Optimal machining parameters selection in high speed milling of hardened steels for injection moulds. J. Mater. Process. Technol. 155, 1505–1512 (2004)CrossRef J. Vivancos, C.J. Luis, L. Costa, J.A. Ortız, Optimal machining parameters selection in high speed milling of hardened steels for injection moulds. J. Mater. Process. Technol. 155, 1505–1512 (2004)CrossRef
7.
Zurück zum Zitat H. Coldwell, R. Woods, M. Paul, P. Koshy, R. Dewes, D. Aspinwall, Rapid machining of hardened AISI H13 and D2 moulds, dies and press tools. J. Mater. Process. Technol. 135(2–3), 301–311 (2003)CrossRef H. Coldwell, R. Woods, M. Paul, P. Koshy, R. Dewes, D. Aspinwall, Rapid machining of hardened AISI H13 and D2 moulds, dies and press tools. J. Mater. Process. Technol. 135(2–3), 301–311 (2003)CrossRef
8.
Zurück zum Zitat S. Dilbag, P.V. Rao, Performance improvement of hard turning with solid lubricants. Int. J. Adv. Manuf. Technol. 38(5–6), 529–535 (2008)CrossRef S. Dilbag, P.V. Rao, Performance improvement of hard turning with solid lubricants. Int. J. Adv. Manuf. Technol. 38(5–6), 529–535 (2008)CrossRef
9.
Zurück zum Zitat V.N. Gaitonde, S.R. Karnik, L. Figueira, J.P. Davim, Analysis of machinability during hard turning of cold work tool steel (type: AISI D2). Mater. Manuf. Processes 24(12), 1373–1382 (2009)CrossRef V.N. Gaitonde, S.R. Karnik, L. Figueira, J.P. Davim, Analysis of machinability during hard turning of cold work tool steel (type: AISI D2). Mater. Manuf. Processes 24(12), 1373–1382 (2009)CrossRef
10.
Zurück zum Zitat E.M. Trent, P.K. Wright, Metal cutting (Butterworth-Heinemann, MA, 2000)CrossRef E.M. Trent, P.K. Wright, Metal cutting (Butterworth-Heinemann, MA, 2000)CrossRef
11.
Zurück zum Zitat T.H.C. Childs, K. Maekawa, T. Obikawa, Y. Yamane, Metal Machining: Theory and Applications (Elsevier, MA, 2000) T.H.C. Childs, K. Maekawa, T. Obikawa, Y. Yamane, Metal Machining: Theory and Applications (Elsevier, MA, 2000)
12.
Zurück zum Zitat A. Shokrani, V. Dhokia, S. Newman, Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloy. J. Manuf. Process. 21, 172–179 (2016)CrossRef A. Shokrani, V. Dhokia, S. Newman, Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloy. J. Manuf. Process. 21, 172–179 (2016)CrossRef
13.
Zurück zum Zitat R.V. Rao, V.D. Kalyankar, Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm. Eng. Appl. Artif. Intell. 26(1), 524–531 (2013)CrossRef R.V. Rao, V.D. Kalyankar, Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm. Eng. Appl. Artif. Intell. 26(1), 524–531 (2013)CrossRef
14.
Zurück zum Zitat W. Wei, Z. Di, D.M. Allen, H.J.A. Almond, Non-traditional machining techniques for fabricating metal aerospace filters. Chin. J. Aeronaut. 21(5), 441–447 (2008)CrossRef W. Wei, Z. Di, D.M. Allen, H.J.A. Almond, Non-traditional machining techniques for fabricating metal aerospace filters. Chin. J. Aeronaut. 21(5), 441–447 (2008)CrossRef
15.
Zurück zum Zitat F. Cus, J. Balic, Optimization of cutting process by GA approach. Robot. Comput. Integr. Manuf. 19(1–2), 113–121 (2003)CrossRef F. Cus, J. Balic, Optimization of cutting process by GA approach. Robot. Comput. Integr. Manuf. 19(1–2), 113–121 (2003)CrossRef
16.
Zurück zum Zitat T.N. Wong, S.L. Siu, A knowledge-based approach to automated machining process selection and sequencing. Int. J. Prod. Res. 33(12), 3465–3484 (1995)MATHCrossRef T.N. Wong, S.L. Siu, A knowledge-based approach to automated machining process selection and sequencing. Int. J. Prod. Res. 33(12), 3465–3484 (1995)MATHCrossRef
17.
Zurück zum Zitat I. Mukherjee, P.K. Ray, A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 50(1–2), 15–34 (2006)CrossRef I. Mukherjee, P.K. Ray, A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 50(1–2), 15–34 (2006)CrossRef
18.
Zurück zum Zitat B. Arezoo, K. Ridgway, A.M.A. Al-Ahmari, Selection of cutting tools and conditions of machining operations using an expert system. Comput. Ind. 42(1), 43–58 (2000)CrossRef B. Arezoo, K. Ridgway, A.M.A. Al-Ahmari, Selection of cutting tools and conditions of machining operations using an expert system. Comput. Ind. 42(1), 43–58 (2000)CrossRef
19.
Zurück zum Zitat R. Suresh, S. Basavarajappa, V.N. Gaitonde, G.L. Samuel, Machinability investigations on hardened AISI 4340 steel using coated carbide insert. Int. J. Refract Metal Hard Mater. 33, 75–86 (2012)CrossRef R. Suresh, S. Basavarajappa, V.N. Gaitonde, G.L. Samuel, Machinability investigations on hardened AISI 4340 steel using coated carbide insert. Int. J. Refract Metal Hard Mater. 33, 75–86 (2012)CrossRef
20.
Zurück zum Zitat H. Aouici, H. Bouchelaghem, M.A. Yallese, M. Elbah, B. Fnides, Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology. Int. J. Adv. Manuf. Technol. 73(9–12), 1775–1788 (2014)CrossRef H. Aouici, H. Bouchelaghem, M.A. Yallese, M. Elbah, B. Fnides, Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology. Int. J. Adv. Manuf. Technol. 73(9–12), 1775–1788 (2014)CrossRef
21.
Zurück zum Zitat G. Bartarya, S.K. Choudhury, State of the art in hard turning. Int. J. Mach. Tools Manuf 53(1), 1–14 (2012)CrossRef G. Bartarya, S.K. Choudhury, State of the art in hard turning. Int. J. Mach. Tools Manuf 53(1), 1–14 (2012)CrossRef
22.
Zurück zum Zitat F. Klocke, E. Brinksmeier, K. Weinert, Capability profile of hard cutting and grinding processes. CIRP Ann. Manuf. Technol. 54(2), 22–45 (2005)CrossRef F. Klocke, E. Brinksmeier, K. Weinert, Capability profile of hard cutting and grinding processes. CIRP Ann. Manuf. Technol. 54(2), 22–45 (2005)CrossRef
23.
Zurück zum Zitat Y.K. Chou, Hui Song, Tool nose radius effects on finish hard turning. J. Mater. Process. Technol. 148(2), 259–268 (2004)CrossRef Y.K. Chou, Hui Song, Tool nose radius effects on finish hard turning. J. Mater. Process. Technol. 148(2), 259–268 (2004)CrossRef
24.
Zurück zum Zitat H.K. Tonshoff, H.G. Wobker, D. Brandt, Hard turning—Influence on the workpiece properties. Trans. North Am. Manuf. Res. Inst. SME 23, 215–220 (1995) H.K. Tonshoff, H.G. Wobker, D. Brandt, Hard turning—Influence on the workpiece properties. Trans. North Am. Manuf. Res. Inst. SME 23, 215–220 (1995)
25.
Zurück zum Zitat L.N.L. De Lacalle, A. Lamikiz, J.F. de Larrinoa, I. Azkona, Advanced cutting tools, in Machining of Hard Materials (Springer, London, 2011), pp. 33–86 L.N.L. De Lacalle, A. Lamikiz, J.F. de Larrinoa, I. Azkona, Advanced cutting tools, in Machining of Hard Materials (Springer, London, 2011), pp. 33–86
26.
Zurück zum Zitat E. Kuram, B. Ozcelik, E. Demirbas, Environmentally friendly machining: vegetable based cutting fluids, in Green Manufacturing Processes and Systems (Springer, Berlin, Heidelberg, 2013), pp. 23–47 E. Kuram, B. Ozcelik, E. Demirbas, Environmentally friendly machining: vegetable based cutting fluids, in Green Manufacturing Processes and Systems (Springer, Berlin, Heidelberg, 2013), pp. 23–47
27.
Zurück zum Zitat W.W. Badiuzaman, M.A. Karim, N.A. Derahman, N.M. Amran, M.M. Isa, Analysation of performances of CNC high speed milling machine using multi-walled carbon nanotubes as additives in cutting fluid. Materialwiss Werkstofftechnik 49(4), 494–499 (2018)CrossRef W.W. Badiuzaman, M.A. Karim, N.A. Derahman, N.M. Amran, M.M. Isa, Analysation of performances of CNC high speed milling machine using multi-walled carbon nanotubes as additives in cutting fluid. Materialwiss Werkstofftechnik 49(4), 494–499 (2018)CrossRef
28.
Zurück zum Zitat G. Byrne, E. Scholta, Environmentally clean machining processes—a strategic approach. CIRP Ann. Manuf. Technol. 42(1), 471–474 (1993)CrossRef G. Byrne, E. Scholta, Environmentally clean machining processes—a strategic approach. CIRP Ann. Manuf. Technol. 42(1), 471–474 (1993)CrossRef
29.
Zurück zum Zitat Y.M. Shashidhara, S.R. Jayaram, Vegetable oils as a potential cutting fluid—an evolution. Tribol. Int. 43(5–6), 1073–1081 (2010)CrossRef Y.M. Shashidhara, S.R. Jayaram, Vegetable oils as a potential cutting fluid—an evolution. Tribol. Int. 43(5–6), 1073–1081 (2010)CrossRef
30.
Zurück zum Zitat P.S. Sreejith, B.K.A. Ngoi, Dry machining: machining of the future. J. Mater. Process. Technol. 101(1–3), 287–291 (2000)CrossRef P.S. Sreejith, B.K.A. Ngoi, Dry machining: machining of the future. J. Mater. Process. Technol. 101(1–3), 287–291 (2000)CrossRef
31.
Zurück zum Zitat A.E. Diniz, R. Micaroni, Cutting conditions for finish turning process aiming: the use of dry cutting. Int. J. Mach. Tools Manuf. 42(8), 899–904 (2002)CrossRef A.E. Diniz, R. Micaroni, Cutting conditions for finish turning process aiming: the use of dry cutting. Int. J. Mach. Tools Manuf. 42(8), 899–904 (2002)CrossRef
32.
Zurück zum Zitat R.W. Cumberland, M.B. Weinberger, J.J. Gilman, S.M. Clark, S.H. Tolbert, R.B. Kaner, Osmium diboride, an ultra-incompressible, hard material. J. Am. Chem. Soc. 127(20), 7264–7265 (2005)CrossRef R.W. Cumberland, M.B. Weinberger, J.J. Gilman, S.M. Clark, S.H. Tolbert, R.B. Kaner, Osmium diboride, an ultra-incompressible, hard material. J. Am. Chem. Soc. 127(20), 7264–7265 (2005)CrossRef
33.
Zurück zum Zitat S. Singh, S. Maheshwari, P.C. Pandey, Some investigations into the electric discharge machining of hardened tool steel using different electrode materials. J. Mater. Process. Technol. 149(1–3), 272–277 (2004)CrossRef S. Singh, S. Maheshwari, P.C. Pandey, Some investigations into the electric discharge machining of hardened tool steel using different electrode materials. J. Mater. Process. Technol. 149(1–3), 272–277 (2004)CrossRef
34.
Zurück zum Zitat V.P. Astakhov, Machining of hard materials–definitions and industrial applications, in Machining of Hard Materials (Springer, London, 2011), pp. 1–32 V.P. Astakhov, Machining of hard materials–definitions and industrial applications, in Machining of Hard Materials (Springer, London, 2011), pp. 1–32
35.
Zurück zum Zitat M.W. Cook, P.K. Bossom, Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride. Int. J. Refract Metal Hard Mater. 18(2–3), 147–152 (2000)CrossRef M.W. Cook, P.K. Bossom, Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride. Int. J. Refract Metal Hard Mater. 18(2–3), 147–152 (2000)CrossRef
36.
Zurück zum Zitat D. Umbrello, J. Hua, R. Shivpuri, Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel. Mater. Sci. Eng. A 374(1–2), 90–100 (2004)CrossRef D. Umbrello, J. Hua, R. Shivpuri, Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel. Mater. Sci. Eng. A 374(1–2), 90–100 (2004)CrossRef
37.
Zurück zum Zitat G. Grzesik, Machining of hard materials, in Machining: Fundamentals and Recent Advances, ed. by P. Davim (Springer, London, 2008), pp. 97–126CrossRef G. Grzesik, Machining of hard materials, in Machining: Fundamentals and Recent Advances, ed. by P. Davim (Springer, London, 2008), pp. 97–126CrossRef
38.
Zurück zum Zitat S. Malkin, C. Guo, Grinding Technology: Theory and Application of Machining with Abrasives (Industrial Press Inc., 2008) S. Malkin, C. Guo, Grinding Technology: Theory and Application of Machining with Abrasives (Industrial Press Inc., 2008)
39.
Zurück zum Zitat S. Jha, V.K. Jain, Nanofinishing techniques, in Micromanufacturing and Nanotechnology (Springer, Berlin, Heidelberg, 2006), pp. 171–195 S. Jha, V.K. Jain, Nanofinishing techniques, in Micromanufacturing and Nanotechnology (Springer, Berlin, Heidelberg, 2006), pp. 171–195
40.
Zurück zum Zitat E.O. Ezugwu, Key improvements in the machining of difficult-to-cut aerospace superalloys. Int. J. Mach. Tools Manuf. 45(12–13), 1353–1367 (2005)CrossRef E.O. Ezugwu, Key improvements in the machining of difficult-to-cut aerospace superalloys. Int. J. Mach. Tools Manuf. 45(12–13), 1353–1367 (2005)CrossRef
41.
Zurück zum Zitat J. Rech, A. Moisan, Surface integrity in finish hard turning of case hardened steel. Int. J. Mach. Tools Manuf. 43(5), 543–550 (2003)CrossRef J. Rech, A. Moisan, Surface integrity in finish hard turning of case hardened steel. Int. J. Mach. Tools Manuf. 43(5), 543–550 (2003)CrossRef
42.
Zurück zum Zitat D.I. Lalwani, N.K. Mehta, P.K. Jain, Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. J. Mater. Process. Technol. 206(1–3), 167–179 (2008)CrossRef D.I. Lalwani, N.K. Mehta, P.K. Jain, Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. J. Mater. Process. Technol. 206(1–3), 167–179 (2008)CrossRef
43.
Zurück zum Zitat G. Byrne, D. Dornfeld, B. Denkena, Advancing cutting technology. Ann CIRP 52(2), 483–507 (2003)CrossRef G. Byrne, D. Dornfeld, B. Denkena, Advancing cutting technology. Ann CIRP 52(2), 483–507 (2003)CrossRef
44.
Zurück zum Zitat D. Singh, P.V. Rao, A surface roughness prediction model for hard turning process. Int. J. Adv. Manuf. Technol. 32(11–12), 1115–1124 (2007)CrossRef D. Singh, P.V. Rao, A surface roughness prediction model for hard turning process. Int. J. Adv. Manuf. Technol. 32(11–12), 1115–1124 (2007)CrossRef
45.
Zurück zum Zitat W. König, R. Komanduri, H.K. Toenshoff, G. Ackershott, Machining of hard materials. CIRP Ann. 33(2), 417–427 (1984)CrossRef W. König, R. Komanduri, H.K. Toenshoff, G. Ackershott, Machining of hard materials. CIRP Ann. 33(2), 417–427 (1984)CrossRef
46.
Zurück zum Zitat H.K. Tönshoff, F. Kroos, C. Marzenell, High-pressure water peening-a new mechanical surface-strengthening process. CIRP Ann. 46(1), 113–116 (1997)CrossRef H.K. Tönshoff, F. Kroos, C. Marzenell, High-pressure water peening-a new mechanical surface-strengthening process. CIRP Ann. 46(1), 113–116 (1997)CrossRef
47.
Zurück zum Zitat A. Das, S.K. Patel, T.K. Hotta, B.B. Biswal, Statistical analysis of different machining characteristics of EN-24 alloy steel during dry hard turning with multilayer coated cermet inserts. Measurement 134, 123–141 (2019)CrossRef A. Das, S.K. Patel, T.K. Hotta, B.B. Biswal, Statistical analysis of different machining characteristics of EN-24 alloy steel during dry hard turning with multilayer coated cermet inserts. Measurement 134, 123–141 (2019)CrossRef
48.
Zurück zum Zitat M.A. Sampaio, Á.R. Machado, C.A.H. Laurindo, R.D. Torres, F.L. Amorim, Influence of minimum quantity of lubrication (MQL) when turning hardened SAE 1045 steel: a comparison with dry machining. Int. J. Adv. Manuf. Technol. 98(1–4), 959–968 (2018)CrossRef M.A. Sampaio, Á.R. Machado, C.A.H. Laurindo, R.D. Torres, F.L. Amorim, Influence of minimum quantity of lubrication (MQL) when turning hardened SAE 1045 steel: a comparison with dry machining. Int. J. Adv. Manuf. Technol. 98(1–4), 959–968 (2018)CrossRef
49.
Zurück zum Zitat A. Alok, M. Das, Multi-objective optimization of cutting parameters during sustainable dry hard turning of AISI 52100 steel with newly develop HSN2-coated carbide insert. Measurement 133, 288–302 (2019)CrossRef A. Alok, M. Das, Multi-objective optimization of cutting parameters during sustainable dry hard turning of AISI 52100 steel with newly develop HSN2-coated carbide insert. Measurement 133, 288–302 (2019)CrossRef
51.
Zurück zum Zitat R. Kumar, A.K. Sahoo, P.C. Mishra, R.K. Das, Measurement and machinability study under environmentally conscious spray impingement cooling assisted machining. Measurement 135, 913–927 (2019)CrossRef R. Kumar, A.K. Sahoo, P.C. Mishra, R.K. Das, Measurement and machinability study under environmentally conscious spray impingement cooling assisted machining. Measurement 135, 913–927 (2019)CrossRef
52.
Zurück zum Zitat S. Debnath, M.M. Reddy, A. Pramanik, Dry and near-dry machining techniques for green manufacturing, in Innovations in Manufacturing for Sustainability. Materials Forming, Machining and Tribology, ed. by K. Gupta (Springer, Cham, 2019) S. Debnath, M.M. Reddy, A. Pramanik, Dry and near-dry machining techniques for green manufacturing, in Innovations in Manufacturing for Sustainability. Materials Forming, Machining and Tribology, ed. by K. Gupta (Springer, Cham, 2019)
53.
Zurück zum Zitat B.P. Erdel, High-Speed Machining. Society of Manufacturing Engineers (2003) B.P. Erdel, High-Speed Machining. Society of Manufacturing Engineers (2003)
54.
Zurück zum Zitat R. Suresh, S. Basavarajappa, V.N. Gaitonde, G.L. Samuel, J.P. Davim, State-of-the-art research in machinability of hardened steels. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227(2), 191–209 (2013)CrossRef R. Suresh, S. Basavarajappa, V.N. Gaitonde, G.L. Samuel, J.P. Davim, State-of-the-art research in machinability of hardened steels. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227(2), 191–209 (2013)CrossRef
55.
Zurück zum Zitat R. Hasan, Why are you still grinding? Manuf. Eng. (USA) 120(2), 76 (1998) R. Hasan, Why are you still grinding? Manuf. Eng. (USA) 120(2), 76 (1998)
56.
Zurück zum Zitat H. Tonshoff, C. Arendt, R. Ben Amor, Cutting of hardened steel. Ann. CIRP 49, 547–566 (2000)CrossRef H. Tonshoff, C. Arendt, R. Ben Amor, Cutting of hardened steel. Ann. CIRP 49, 547–566 (2000)CrossRef
58.
Zurück zum Zitat V.F. Makarov, D.I. Tokarev, V.R. Tyktamishev, High speed broaching of hard machining materials. Int. J. Mater. Form. 1(1), 547–550 (2008)CrossRef V.F. Makarov, D.I. Tokarev, V.R. Tyktamishev, High speed broaching of hard machining materials. Int. J. Mater. Form. 1(1), 547–550 (2008)CrossRef
59.
Zurück zum Zitat U. Kokturk, E. Budak, Optimization of broaching tool design, in Proceeding of the CIRP ICME, 4 (2004) U. Kokturk, E. Budak, Optimization of broaching tool design, in Proceeding of the CIRP ICME, 4 (2004)
60.
Zurück zum Zitat D. Shi, D.A. Axinte, N.N. Gindy, Development of an online machining process monitoring system: a case study of the broaching process. Int. J. Adv. Manuf. Technol. 34(1–2), 34–46 (2007)CrossRef D. Shi, D.A. Axinte, N.N. Gindy, Development of an online machining process monitoring system: a case study of the broaching process. Int. J. Adv. Manuf. Technol. 34(1–2), 34–46 (2007)CrossRef
61.
Zurück zum Zitat J. Kundrák, A.G. Mamalis, A. Markopoulos, Finishing of hardened boreholes: grinding or hard cutting? Mater. Manuf. Processes 19(6), 979–993 (2004)CrossRef J. Kundrák, A.G. Mamalis, A. Markopoulos, Finishing of hardened boreholes: grinding or hard cutting? Mater. Manuf. Processes 19(6), 979–993 (2004)CrossRef
62.
Zurück zum Zitat Y. Matsumoto, F. Hashimoto, G. Lahoti, Surface integrity generated by precision hard turning. CIRP Ann. Manuf. Technol. 48(1), 59–62 (1999)CrossRef Y. Matsumoto, F. Hashimoto, G. Lahoti, Surface integrity generated by precision hard turning. CIRP Ann. Manuf. Technol. 48(1), 59–62 (1999)CrossRef
63.
Zurück zum Zitat J. Kundrák, Hard boring of gears. J. Prod. Process. Syst. 6(1), 61–70 (2012) J. Kundrák, Hard boring of gears. J. Prod. Process. Syst. 6(1), 61–70 (2012)
64.
Zurück zum Zitat W. Li, Y. Guo, C. Guo, Superior surface integrity by sustainable dry hard milling and impact on fatigue. CIRP Ann. Manuf. Technol. 62(1), 567–570 (2013)CrossRef W. Li, Y. Guo, C. Guo, Superior surface integrity by sustainable dry hard milling and impact on fatigue. CIRP Ann. Manuf. Technol. 62(1), 567–570 (2013)CrossRef
65.
Zurück zum Zitat H. Çalışkan, C. Kurbanoğlu, P. Panjan, D. Kramar, Investigation of the performance of carbide cutting tools with hard coatings in hard milling based on the response surface methodology. Int. J. Adv. Manuf. Technol. 66(5–8), 883–893 (2013)CrossRef H. Çalışkan, C. Kurbanoğlu, P. Panjan, D. Kramar, Investigation of the performance of carbide cutting tools with hard coatings in hard milling based on the response surface methodology. Int. J. Adv. Manuf. Technol. 66(5–8), 883–893 (2013)CrossRef
66.
Zurück zum Zitat P. Chatterjee, S. Chakraborty, Material selection using preferential ranking methods. Mater. Des. 35, 384–393 (2012)CrossRef P. Chatterjee, S. Chakraborty, Material selection using preferential ranking methods. Mater. Des. 35, 384–393 (2012)CrossRef
67.
Zurück zum Zitat A. Iqbal, H. Ning, I. Khan, L. Liang, N.U. Dar, Modeling the effects of cutting parameters in MQL-employed finish hard-milling process using D-optimal method. J. Mater. Process. Technol. 199(1–3), 379–390 (2008)CrossRef A. Iqbal, H. Ning, I. Khan, L. Liang, N.U. Dar, Modeling the effects of cutting parameters in MQL-employed finish hard-milling process using D-optimal method. J. Mater. Process. Technol. 199(1–3), 379–390 (2008)CrossRef
68.
Zurück zum Zitat D.A. Axinte, R.C. Dewes, Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. J. Mater. Process. Technol. 127(3), 325–335 (2002)CrossRef D.A. Axinte, R.C. Dewes, Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. J. Mater. Process. Technol. 127(3), 325–335 (2002)CrossRef
69.
Zurück zum Zitat S. Zhang, Y.B. Guo, Taguchi method based process space for optimal surface topography by finish hard milling. J. Manuf. Sci. Eng. 131(5), 051003 (2009)CrossRef S. Zhang, Y.B. Guo, Taguchi method based process space for optimal surface topography by finish hard milling. J. Manuf. Sci. Eng. 131(5), 051003 (2009)CrossRef
70.
Zurück zum Zitat D.W. Wu, Y. Matsumoto, The effect of hardness on residual stresses in orthogonal machining of AISI 4340 steel. J. Eng. Ind. 112(3), 245–252 (1990)CrossRef D.W. Wu, Y. Matsumoto, The effect of hardness on residual stresses in orthogonal machining of AISI 4340 steel. J. Eng. Ind. 112(3), 245–252 (1990)CrossRef
71.
Zurück zum Zitat H. Çalışkan, B. Kurşuncu, C. Kurbanoğlu, Ş.Y. Güven, Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Mater. Des. 45, 473–479 (2013)CrossRef H. Çalışkan, B. Kurşuncu, C. Kurbanoğlu, Ş.Y. Güven, Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Mater. Des. 45, 473–479 (2013)CrossRef
72.
Zurück zum Zitat O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int. J. Plast 16(10–11), 1391–1409 (2000)MATHCrossRef O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int. J. Plast 16(10–11), 1391–1409 (2000)MATHCrossRef
73.
Zurück zum Zitat R.L. Klueh, Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int. Mater. Rev. 50(5), 287–310 (2005)CrossRef R.L. Klueh, Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int. Mater. Rev. 50(5), 287–310 (2005)CrossRef
74.
Zurück zum Zitat M. Finšgar, J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros. Sci. 86, 17–41 (2014)CrossRef M. Finšgar, J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros. Sci. 86, 17–41 (2014)CrossRef
75.
Zurück zum Zitat J.R. Davis, Surface Hardening of Steels (ASM International, Materials Park, OH, 2002), p. 227 J.R. Davis, Surface Hardening of Steels (ASM International, Materials Park, OH, 2002), p. 227
76.
Zurück zum Zitat K. Moore, D.N. Collins, Cryogenic treatment of three heat-treated tool steels, in Key Engineering Materials, vol. 86 (1993), pp. 47–54CrossRef K. Moore, D.N. Collins, Cryogenic treatment of three heat-treated tool steels, in Key Engineering Materials, vol. 86 (1993), pp. 47–54CrossRef
77.
Zurück zum Zitat A.R. Machado, J. Wallbank, Machining of titanium and its alloys—a review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 204(1), 53–60 (1990)CrossRef A.R. Machado, J. Wallbank, Machining of titanium and its alloys—a review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 204(1), 53–60 (1990)CrossRef
78.
Zurück zum Zitat E.O. Ezugwu, Z.M. Wang, Titanium alloys and their machinability—a review. J. Mater. Process. Technol. 68(3), 262–274 (1997)CrossRef E.O. Ezugwu, Z.M. Wang, Titanium alloys and their machinability—a review. J. Mater. Process. Technol. 68(3), 262–274 (1997)CrossRef
79.
Zurück zum Zitat X. Yang, C. Richard Liu, Machining titanium and its alloys. Mach. Sci. Technol. 3(1), 107–139 (1999)CrossRef X. Yang, C. Richard Liu, Machining titanium and its alloys. Mach. Sci. Technol. 3(1), 107–139 (1999)CrossRef
80.
Zurück zum Zitat E.O. Ezugwu, Z.M. Wang, A.R. Machado, The machinability of nickel-based alloys: a review. J. Mater. Process. Technol. 86(1–3), 1–16 (1999)CrossRef E.O. Ezugwu, Z.M. Wang, A.R. Machado, The machinability of nickel-based alloys: a review. J. Mater. Process. Technol. 86(1–3), 1–16 (1999)CrossRef
81.
Zurück zum Zitat I.A. Choudhury, M.A. El-Baradie, Machinability of nickel-base super alloys: a general review. J. Mater. Process. Technol. 77(1–3), 278–284 (1998)CrossRef I.A. Choudhury, M.A. El-Baradie, Machinability of nickel-base super alloys: a general review. J. Mater. Process. Technol. 77(1–3), 278–284 (1998)CrossRef
82.
Zurück zum Zitat R.R. Boyer, Attributes, characteristics, and applications of titanium and its alloys. J. Mater. 62(5), 21–24 (2010) R.R. Boyer, Attributes, characteristics, and applications of titanium and its alloys. J. Mater. 62(5), 21–24 (2010)
83.
Zurück zum Zitat C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, Biomedical applications of titanium and its alloys. J. Mater. 60(3), 46–49 (2008) C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, Biomedical applications of titanium and its alloys. J. Mater. 60(3), 46–49 (2008)
84.
Zurück zum Zitat I.V. Gorynin, Titanium alloys for marine application. Mater. Sci. Eng. A 263(2), 112–116 (1999)CrossRef I.V. Gorynin, Titanium alloys for marine application. Mater. Sci. Eng. A 263(2), 112–116 (1999)CrossRef
85.
Zurück zum Zitat U.K. Karl, Metal matrix composites: custom-made materials for automotive and aerospace engineering, in Basics of Metal Matrix Composites, ed. by K.U. Kainer (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2006) U.K. Karl, Metal matrix composites: custom-made materials for automotive and aerospace engineering, in Basics of Metal Matrix Composites, ed. by K.U. Kainer (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2006)
86.
Zurück zum Zitat R. Teti, Machining of composite materials. CIRP Ann. Manuf. Technol. 51(2), 611–634 (2002)CrossRef R. Teti, Machining of composite materials. CIRP Ann. Manuf. Technol. 51(2), 611–634 (2002)CrossRef
87.
Zurück zum Zitat T.W. Chou, J.M. Yang, Structure-performance maps of polymeric, metal, and ceramic matrix composites. Metall. Trans. A 17(9), 1547–1559 (1986)CrossRef T.W. Chou, J.M. Yang, Structure-performance maps of polymeric, metal, and ceramic matrix composites. Metall. Trans. A 17(9), 1547–1559 (1986)CrossRef
88.
Zurück zum Zitat A. Evans, C. San Marchi, A. Mortensen, Metal Matrix Composites in Industry: An Introduction and a Survey (Springer Science & Business Media, 2013) A. Evans, C. San Marchi, A. Mortensen, Metal Matrix Composites in Industry: An Introduction and a Survey (Springer Science & Business Media, 2013)
89.
Zurück zum Zitat A.B. Sadat, Surface integrity when machining metal matrix composites, in Machining of Metal Matrix Composites (Springer, London, 2012), pp. 51–61 A.B. Sadat, Surface integrity when machining metal matrix composites, in Machining of Metal Matrix Composites (Springer, London, 2012), pp. 51–61
90.
Zurück zum Zitat C.R. Dandekar, Y.C. Shin, Modeling of machining of composite materials: a review. Int. J. Mach. Tools Manuf. 57, 102–121 (2012)CrossRef C.R. Dandekar, Y.C. Shin, Modeling of machining of composite materials: a review. Int. J. Mach. Tools Manuf. 57, 102–121 (2012)CrossRef
91.
Zurück zum Zitat N. Muthukrishnan, M. Murugan, K.P. Rao, Machinability issues in turning of Al-SiC (10p) metal matrix composites. Int. J. Adv. Manuf. Technol. 39(3–4), 211–218 (2008)CrossRef N. Muthukrishnan, M. Murugan, K.P. Rao, Machinability issues in turning of Al-SiC (10p) metal matrix composites. Int. J. Adv. Manuf. Technol. 39(3–4), 211–218 (2008)CrossRef
92.
Zurück zum Zitat I.A. Di, A. Paoletti, Machinability aspects of metal matrix composites, in Machining of Metal Matrix Composites (Springer, London, 2012), pp. 63–77 I.A. Di, A. Paoletti, Machinability aspects of metal matrix composites, in Machining of Metal Matrix Composites (Springer, London, 2012), pp. 63–77
93.
Zurück zum Zitat X.Q. Cao, R. Vassen, D. Stoever, Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24(1), 1–10 (2004)CrossRef X.Q. Cao, R. Vassen, D. Stoever, Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24(1), 1–10 (2004)CrossRef
95.
Zurück zum Zitat A. Gorin, M.M. Reddy, Advanced ceramics: Some challenges and solutions in machining by conventional methods. Appl. Mech. Mater. 624, 42–47 (2014)CrossRef A. Gorin, M.M. Reddy, Advanced ceramics: Some challenges and solutions in machining by conventional methods. Appl. Mech. Mater. 624, 42–47 (2014)CrossRef
96.
Zurück zum Zitat V.P. Astakhov, J.P. Davim, Tools (geometry and material) and tool wear, in Machining (Springer, London, 2008), pp. 29–57 V.P. Astakhov, J.P. Davim, Tools (geometry and material) and tool wear, in Machining (Springer, London, 2008), pp. 29–57
99.
Zurück zum Zitat V.P. Astakhov, Tribology of Metal Cutting, vol. 52 (Elsevier, Amsterdam, 2006) V.P. Astakhov, Tribology of Metal Cutting, vol. 52 (Elsevier, Amsterdam, 2006)
100.
Zurück zum Zitat K.D. Bouzakis, N. Michailidis, G. Skordaris, E. Bouzakis, D. Biermann, R. M’Saoubi, Cutting with coated tools: Coating technologies, characterization methods and performance optimization. CIRP Ann. Manuf. Technol. 61(2), 703–723 (2012)CrossRef K.D. Bouzakis, N. Michailidis, G. Skordaris, E. Bouzakis, D. Biermann, R. M’Saoubi, Cutting with coated tools: Coating technologies, characterization methods and performance optimization. CIRP Ann. Manuf. Technol. 61(2), 703–723 (2012)CrossRef
101.
Zurück zum Zitat Z.C. Lin, D.Y. Chen, A study of cutting with a CBN tool. J. Mater. Process. Technol. 49(1–2), 149–164 (1995)CrossRef Z.C. Lin, D.Y. Chen, A study of cutting with a CBN tool. J. Mater. Process. Technol. 49(1–2), 149–164 (1995)CrossRef
103.
Zurück zum Zitat Z.G. Wang, M. Rahman, Y.S. Wong, Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys. Wear 258(5–6), 752–758 (2005)CrossRef Z.G. Wang, M. Rahman, Y.S. Wong, Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys. Wear 258(5–6), 752–758 (2005)CrossRef
104.
Zurück zum Zitat Z.A. Zoya, R. Krishnamurthy, The performance of CBN tools in the machining of titanium alloys. J. Mater. Process. Technol. 100(1–3), 80–86 (2000)CrossRef Z.A. Zoya, R. Krishnamurthy, The performance of CBN tools in the machining of titanium alloys. J. Mater. Process. Technol. 100(1–3), 80–86 (2000)CrossRef
105.
Zurück zum Zitat C.B. Fuller, Friction stir tooling: tool materials and designs. Frict. Stir Weld. Process. (2007), pp. 7–36 C.B. Fuller, Friction stir tooling: tool materials and designs. Frict. Stir Weld. Process. (2007), pp. 7–36
106.
Zurück zum Zitat M.K. Besharati-Givi, P. Asadi, Advances in Friction-Stir Welding and Processing (Elsevier, 2014) M.K. Besharati-Givi, P. Asadi, Advances in Friction-Stir Welding and Processing (Elsevier, 2014)
107.
Zurück zum Zitat R.M. Arunachalam, M.A. Mannan, A.C. Spowage, Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. Int. J. Mach. Tools Manuf. 44(14), 1481–1491 (2004)CrossRef R.M. Arunachalam, M.A. Mannan, A.C. Spowage, Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. Int. J. Mach. Tools Manuf. 44(14), 1481–1491 (2004)CrossRef
108.
Zurück zum Zitat A. Hosseini, H.A. Kishawy, Cutting tool materials and tool wear, in Machining of Titanium Alloys (Springer, Berlin, Heidelberg, 2014), pp. 31–56 A. Hosseini, H.A. Kishawy, Cutting tool materials and tool wear, in Machining of Titanium Alloys (Springer, Berlin, Heidelberg, 2014), pp. 31–56
Metadaten
Titel
Introduction to Hard Materials and Machining Methods
verfasst von
Manjunath Patel G. C.
Ganesh R. Chate
Mahesh B. Parappagoudar
Kapil Gupta
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-40102-3_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.