Skip to main content
Erschienen in: Journal of Applied and Industrial Mathematics 2/2023

01.06.2023

Inverse Problem of Pure Bending of a Beam under Creep Conditions

verfasst von: S. V. Boyko, A. Yu. Larichkin

Erschienen in: Journal of Applied and Industrial Mathematics | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose an algorithm for solving the inverse problem of forming structural members under creep conditions using the Nelder–Mead algorithm. The initial problem of finding the forces that must be applied to obtain the desired curvature of a part is reduced to a sequence of auxiliary direct problems of modeling the stress-strain state of pure bending of rectangular beams. This model, taking into account the difference in the properties of the material in tension and compression as well as the presence of accumulated damage in the material during creep, was verified by numerical methods and implemented in the finite element program MSC Marc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. C. Ribeiro, E. P. Marinho, D. J. Inforzato, P. R. Costa, and G. F. Batalha, “Creep age forming: A short review of fundaments and applications,” J. Achiev. Mater. Manuf. Eng. 43 (1), 353–361 (2010). F. C. Ribeiro, E. P. Marinho, D. J. Inforzato, P. R. Costa, and G. F. Batalha, “Creep age forming: A short review of fundaments and applications,” J. Achiev. Mater. Manuf. Eng. 43 (1), 353–361 (2010).
2.
5.
Zurück zum Zitat B. V. Gorev and V. A. Panamarev, “The method of integral characteristics for calculating the bending of structural elements,” Nauchno-Tekh. Vestn. S.-Peterb. Gos. Politekh. Univ. Fiz.-Mat. Nauki (177), 201–211 (2013) [in Russian]. B. V. Gorev and V. A. Panamarev, “The method of integral characteristics for calculating the bending of structural elements,” Nauchno-Tekh. Vestn. S.-Peterb. Gos. Politekh. Univ. Fiz.-Mat. Nauki (177), 201–211 (2013) [in Russian].
6.
Zurück zum Zitat B. D. Annin, A. I. Oleinikov, and K. S. Bormotin, “ Modeling of forming of wing panels of the SSJ-100 aircraft,” J. Appl. Mech. Tech. Phys. 51 (4), 579–589 (2010).CrossRefMATH B. D. Annin, A. I. Oleinikov, and K. S. Bormotin, “ Modeling of forming of wing panels of the SSJ-100 aircraft,” J. Appl. Mech. Tech. Phys. 51 (4), 579–589 (2010).CrossRefMATH
7.
Zurück zum Zitat A. Zolochevsky, S. Sklepus, T. H. Hyde, A. A. Becker, and S. Peravali, “Numerical modeling of creep and creep damage in thin plates of arbitrary shape from materials with different behavior in tension and compression under plane stress conditions,” J. Numer. Meth. Eng. 80 (11), 1406–1436 (2009). https://doi.org/10.1002/nme.2663 A. Zolochevsky, S. Sklepus, T. H. Hyde, A. A. Becker, and S. Peravali, “Numerical modeling of creep and creep damage in thin plates of arbitrary shape from materials with different behavior in tension and compression under plane stress conditions,” J. Numer. Meth. Eng. 80 (11), 1406–1436 (2009). https://​doi.​org/​10.​1002/​nme.​2663
8.
Zurück zum Zitat K. Naumenko and H. Altenbach, Modeling High Temperature Materials Behavior for Structural Analysis. Part I: Continuum Mechanics Foundations and Constitutive Models (Springer-Verlag, London, 2016).CrossRefMATH K. Naumenko and H. Altenbach, Modeling High Temperature Materials Behavior for Structural Analysis. Part I: Continuum Mechanics Foundations and Constitutive Models (Springer-Verlag, London, 2016).CrossRefMATH
9.
Zurück zum Zitat V. P. Agapov, “Modeling of tee bars in the calculations of building structures by the finite element method,” Stroit. Mekh. Inzh. Konstr. Sooruzh. (2), 55–59 (2016) [in Russian]. V. P. Agapov, “Modeling of tee bars in the calculations of building structures by the finite element method,” Stroit. Mekh. Inzh. Konstr. Sooruzh. (2), 55–59 (2016) [in Russian].
10.
Zurück zum Zitat Yu. N. Rabotnov, Creep of Structural Members (Nauka, Moscow, 1966) [in Russian]. Yu. N. Rabotnov, Creep of Structural Members (Nauka, Moscow, 1966) [in Russian].
11.
Zurück zum Zitat A. F. Nikitenko, Creep and Long-Term Strength of Metallic Materials (NGASU, Novosibirsk, 1997) [in Russian]. A. F. Nikitenko, Creep and Long-Term Strength of Metallic Materials (NGASU, Novosibirsk, 1997) [in Russian].
12.
Zurück zum Zitat O. V. Sosnin, B. V. Gorev, and A. F. Nikitenko, Energy Variant of the Theory of Creep (IGIL SO RAN, Novosibirsk, 1986) [in Russian].MATH O. V. Sosnin, B. V. Gorev, and A. F. Nikitenko, Energy Variant of the Theory of Creep (IGIL SO RAN, Novosibirsk, 1986) [in Russian].MATH
13.
Zurück zum Zitat P. S. Volegov, D. S. Gribov, and P. V. Trusov, “Damage and fracture: Classical continuum theories,” Fiz. Mezomekh. 18 (4), 68–87 (2015) [in Russian]. P. S. Volegov, D. S. Gribov, and P. V. Trusov, “Damage and fracture: Classical continuum theories,” Fiz. Mezomekh. 18 (4), 68–87 (2015) [in Russian].
14.
Zurück zum Zitat A. M. Lokoshchenko, Creep and Long-Term Strength of Metals (Fizmatlit, Moscow, 2016) [in Russian]. A. M. Lokoshchenko, Creep and Long-Term Strength of Metals (Fizmatlit, Moscow, 2016) [in Russian].
15.
Zurück zum Zitat V. P. Radchenko and P. E. Kichaev, Energy Concept of Creep and Vibrocreep of Metals (Izd. Samarsk. Gos. Tekh. Univ., Samara, 2011) [in Russian]. V. P. Radchenko and P. E. Kichaev, Energy Concept of Creep and Vibrocreep of Metals (Izd. Samarsk. Gos. Tekh. Univ., Samara, 2011) [in Russian].
17.
Zurück zum Zitat B. V. Gorev, I. V. Lyubashevskaya, V. A. Panamarev, and S. V. Iyavoynen, “Description of creep and fracture of modern construction materials using kinetic equations in energy form,” J. Appl. Mech. Tech. Phys. 55 (6), 1020–1030 (2014).CrossRef B. V. Gorev, I. V. Lyubashevskaya, V. A. Panamarev, and S. V. Iyavoynen, “Description of creep and fracture of modern construction materials using kinetic equations in energy form,” J. Appl. Mech. Tech. Phys. 55 (6), 1020–1030 (2014).CrossRef
18.
Zurück zum Zitat E. B. Kuznetsov and S. S. Leonov, “Mathematical modeling of pure bending of a beam made of multimodulus aviation material under creep conditions,” Vestn. RUDN. Ser. Inzh. Issled. (1), 111–122 (2015) [in Russian]. E. B. Kuznetsov and S. S. Leonov, “Mathematical modeling of pure bending of a beam made of multimodulus aviation material under creep conditions,” Vestn. RUDN. Ser. Inzh. Issled. (1), 111–122 (2015) [in Russian].
19.
Zurück zum Zitat S. N. Korobeinikov, A. I. Oleinikov, V. B. Gorev, and K. S. Bormotin, “Mathematical simulation of creep processes in metal patterns made of materials with different extension compression properties,” Vychisl. Metody Program. 9, 346–365 (2008) [in Russian]. S. N. Korobeinikov, A. I. Oleinikov, V. B. Gorev, and K. S. Bormotin, “Mathematical simulation of creep processes in metal patterns made of materials with different extension compression properties,” Vychisl. Metody Program. 9, 346–365 (2008) [in Russian].
20.
Zurück zum Zitat A. M. Lokoshchenko, K. A. Agakhi, and L. V. Fomin, “Pure bending of a beam under creep conditions from a differently resisting material,” Vestn. Samarsk. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki (1 (26)), 66–73 (2012) [in Russian]. https://doi.org/10.14498/vsgtu1042 A. M. Lokoshchenko, K. A. Agakhi, and L. V. Fomin, “Pure bending of a beam under creep conditions from a differently resisting material,” Vestn. Samarsk. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki (1 (26)), 66–73 (2012) [in Russian]. https://​doi.​org/​10.​14498/​vsgtu1042
22.
Zurück zum Zitat R. H. Merson, “An operational method for the study of integration processes,” Proc. Symp. Data Process. Weapons Res. Establ. Salisbury (Salisbury, 1957), 110–125. R. H. Merson, “An operational method for the study of integration processes,” Proc. Symp. Data Process. Weapons Res. Establ. Salisbury (Salisbury, 1957), 110–125.
23.
Zurück zum Zitat A. E. Mudrov, Numerical Methods for PC in BASIC, Fortran and Pascal Languages (RASKO, Tomsk, 1991) [in Russian]. A. E. Mudrov, Numerical Methods for PC in BASIC, Fortran and Pascal Languages (RASKO, Tomsk, 1991) [in Russian].
24.
Zurück zum Zitat B. V. Gorev, “To the calculation for unsteady creep of a bent beam from a material with different characteristics in tension and compression,” Din. Sploshnoi Sredy (14), 44–51 (1973) [in Russian]. B. V. Gorev, “To the calculation for unsteady creep of a bent beam from a material with different characteristics in tension and compression,” Din. Sploshnoi Sredy (14), 44–51 (1973) [in Russian].
26.
Zurück zum Zitat K. J. Bathe, Finite Element Procedures in Engineering Analysis (Prentice-Hall, New York, 1982). K. J. Bathe, Finite Element Procedures in Engineering Analysis (Prentice-Hall, New York, 1982).
27.
Zurück zum Zitat K. S. Bormotin, “Iterative numerical methods for computer simulation of optimal forming and riveting of thin-walled panels,” Doctoral (Phys.-Math.) Dissertation (Komsomolsk-on-Amur, 2014). K. S. Bormotin, “Iterative numerical methods for computer simulation of optimal forming and riveting of thin-walled panels,” Doctoral (Phys.-Math.) Dissertation (Komsomolsk-on-Amur, 2014).
29.
Zurück zum Zitat S. N. Korobeinikov, Nonlinear Deformation of Solids (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].MATH S. N. Korobeinikov, Nonlinear Deformation of Solids (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].MATH
30.
Zurück zum Zitat K. N. Rudakov, UGS Femap 10.2.0 Geometric and Finite-Element Modeling of Structures (Kiev. Politekh. Inst., Kiev, 2011) [in Russian]. K. N. Rudakov, UGS Femap 10.2.0 Geometric and Finite-Element Modeling of Structures (Kiev. Politekh. Inst., Kiev, 2011) [in Russian].
31.
Zurück zum Zitat O. V. Sosnin, B. V. Gorev, and V. V. Rubanov, “Torsion of a square plate made of a material with different resistance in tension and compression during creep,” Raschety Prochn. Sudovykh Konstr. Mekh. (117), 78–88 (1976) [in Russian]. O. V. Sosnin, B. V. Gorev, and V. V. Rubanov, “Torsion of a square plate made of a material with different resistance in tension and compression during creep,” Raschety Prochn. Sudovykh Konstr. Mekh. (117), 78–88 (1976) [in Russian].
33.
Zurück zum Zitat S. Yu. Gorodetskii and V. A. Grishagin, Nonlinear Programming and Multiextremal Optimization (Izd. NNGU, Nizhny Novgorod, 2007) [in Russian]. S. Yu. Gorodetskii and V. A. Grishagin, Nonlinear Programming and Multiextremal Optimization (Izd. NNGU, Nizhny Novgorod, 2007) [in Russian].
Metadaten
Titel
Inverse Problem of Pure Bending of a Beam under Creep Conditions
verfasst von
S. V. Boyko
A. Yu. Larichkin
Publikationsdatum
01.06.2023
Verlag
Pleiades Publishing
Erschienen in
Journal of Applied and Industrial Mathematics / Ausgabe 2/2023
Print ISSN: 1990-4789
Elektronische ISSN: 1990-4797
DOI
https://doi.org/10.1134/S1990478923020047

Weitere Artikel der Ausgabe 2/2023

Journal of Applied and Industrial Mathematics 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.