Skip to main content
Erschienen in: Computational Mechanics 4/2023

20.01.2023 | Original Paper

Investigating shock wave propagation, evolution, and anisotropy using a moving window concurrent atomistic–continuum framework

verfasst von: Alexander S. Davis, Vinamra Agrawal

Erschienen in: Computational Mechanics | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Despite their success in microscale modeling of materials, atomistic methods are still limited by short time scales, small domain sizes, and high strain rates. Multiscale formulations can capture the continuum-level response of solids over longer runtimes, but using such schemes to model highly dynamic, nonlinear phenomena is very challenging and an active area of research. In this work, we develop novel techniques within the concurrent atomistic–continuum (CAC) multiscale framework to simulate shock wave propagation through a two-dimensional, single-crystal lattice. The technique is described in detail, and two moving window methods are incorporated to track the shock front through the domain and thus prevent spurious wave reflections at the atomistic–continuum interfaces. We compare our simulation results to analytical models as well as previous atomistic and CAC data and discuss the apparent effects of lattice orientation on the shock response of two materials. We then use the moving window techniques to perform parametric studies which analyze the shock front’s structure. Finally, we compare the efficiency of our model to molecular dynamics simulations. This work showcases the framework’s capability for simulating dynamic shock evolution over long runtimes and opens the door to more complex studies involving shock propagation through composites and alloys.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Davison L (2008) Fundamentals of shock wave propagation in solids. Springer, BerlinMATH Davison L (2008) Fundamentals of shock wave propagation in solids. Springer, BerlinMATH
15.
Zurück zum Zitat Bisht A, Neogi A, Mitra N et al (2019) Investigation of the elastically shock-compressed region and elastic–plastic shock transition in single-crystalline copper to understand the dislocation nucleation mechanism under shock compression. Shock Waves 29(7):913–927. https://doi.org/10.1007/s00193-018-00887-8CrossRef Bisht A, Neogi A, Mitra N et al (2019) Investigation of the elastically shock-compressed region and elastic–plastic shock transition in single-crystalline copper to understand the dislocation nucleation mechanism under shock compression. Shock Waves 29(7):913–927. https://​doi.​org/​10.​1007/​s00193-018-00887-8CrossRef
35.
Zurück zum Zitat Tadmor EB, Miller RE (2011) Modeling materials: continuum, atomistic and multiscale techniques. Cambridge University Press, CambridgeCrossRefMATH Tadmor EB, Miller RE (2011) Modeling materials: continuum, atomistic and multiscale techniques. Cambridge University Press, CambridgeCrossRefMATH
70.
Zurück zum Zitat Marsh SP (1980) LASL shock Hugoniot data. University of California press, California Marsh SP (1980) LASL shock Hugoniot data. University of California press, California
77.
Zurück zum Zitat Yang S (2014) A concurrent atomistic-continuum method for simulating defects in ionic materials. PhD thesis, University of Florida Yang S (2014) A concurrent atomistic-continuum method for simulating defects in ionic materials. PhD thesis, University of Florida
93.
Zurück zum Zitat Shen T, Song H, An M et al (2022) Uncovering strengthening and softening mechanisms of nano-twinned CoCrFeCuNi high entropy alloys by molecular dynamics simulation. J Appl Phys 10(1063/5):0082835 Shen T, Song H, An M et al (2022) Uncovering strengthening and softening mechanisms of nano-twinned CoCrFeCuNi high entropy alloys by molecular dynamics simulation. J Appl Phys 10(1063/5):0082835
Metadaten
Titel
Investigating shock wave propagation, evolution, and anisotropy using a moving window concurrent atomistic–continuum framework
verfasst von
Alexander S. Davis
Vinamra Agrawal
Publikationsdatum
20.01.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2023
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-022-02258-8

Weitere Artikel der Ausgabe 4/2023

Computational Mechanics 4/2023 Zur Ausgabe

Neuer Inhalt