Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 7/2022

20.01.2022 | Research Article-Mechanical Engineering

Investigating Static and Dynamic Behavior of the Strain Gauge Type Pressure Sensor in Exposure to Thermal Stresses

verfasst von: Mina Ghanbari, Ghader Rezazadeh

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the extreme importance of pressure measurement in various industrial applications, studying different types of failures possible in a pressure sensor seems to be very necessary. The presented research analyses thermally affected faults in a strain gauge type pressure sensor. The studied electro-mechanical sensor is composed of a thick plate and a very thin membrane in direct contact with the fluid whose pressure is being measured. The membrane is connected to the sensing plate via the incompressible interface fluid (silicone oil). The temperature difference between the membrane and the body of the sensor creates thermal stresses in the membrane. The equations governing the motion of the sensing plate and membrane in the presence of temperature differences have been presented and solved simultaneously. The occurrence of the buckling phenomenon is studied for the first and second deformation modes of the membrane. It has been shown that in the second deformation mode of the membrane, the existing coupling between the membrane and the plate vanishes which leads to the decrement of the equivalent stiffness of the structure. Therefore, the probability of the occurrence of the buckling phenomenon in the membrane increases significantly compared to the first deformation mode. The effect of geometrical parameters of the sensor on the measurable pressure range of the sensor is investigated in detail. The transient response of the sensor subjected to the dynamic pressure force is studied. The effect of nonlinear terms on the frequency response of the sensor has also been examined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nayak, M.M.; Gunasekaran, N.; Rajanna, K.; Srinivasulu, S.; Mohan, S.: The strain gauge pressure transducers—an overview. IETE Tech Rev 9(2), 170–177 (1992)CrossRef Nayak, M.M.; Gunasekaran, N.; Rajanna, K.; Srinivasulu, S.; Mohan, S.: The strain gauge pressure transducers—an overview. IETE Tech Rev 9(2), 170–177 (1992)CrossRef
2.
Zurück zum Zitat Bakhoum, E.G.; Cheng, M.H.M.: Capacitive pressure sensor with very large dynamic range. IEEE Trans. Compon. Packag. Technol. 33(1), 79–83 (2010)CrossRef Bakhoum, E.G.; Cheng, M.H.M.: Capacitive pressure sensor with very large dynamic range. IEEE Trans. Compon. Packag. Technol. 33(1), 79–83 (2010)CrossRef
3.
Zurück zum Zitat Yang, J.; Ye, Y.; Li, X.; Lü, Z.; Chen, R.: Flexible, conductive, and highly pressure-sensitive graphene-polyimide foam for pressure sensor application, composite. Sci. Technol. 164(18), 187–194 (2018) Yang, J.; Ye, Y.; Li, X.; Lü, Z.; Chen, R.: Flexible, conductive, and highly pressure-sensitive graphene-polyimide foam for pressure sensor application, composite. Sci. Technol. 164(18), 187–194 (2018)
4.
Zurück zum Zitat Tandeske, D.: Pressure sensors: selection and application. Marcel Dekker, New York (1991) Tandeske, D.: Pressure sensors: selection and application. Marcel Dekker, New York (1991)
5.
Zurück zum Zitat Luo, S.; Yang, J.; Song, Z.; Zhou, X.; Yu, L.; Sun, T.; Yu, C.; Huang, D.; Du, C.; We, D.: Tunable-sensitivity flexible pressure sensor based on graphene transparent electrode. Solid-State Electron. 145, 29–33 (2018)CrossRef Luo, S.; Yang, J.; Song, Z.; Zhou, X.; Yu, L.; Sun, T.; Yu, C.; Huang, D.; Du, C.; We, D.: Tunable-sensitivity flexible pressure sensor based on graphene transparent electrode. Solid-State Electron. 145, 29–33 (2018)CrossRef
6.
Zurück zum Zitat Lee, Y.; Wise, K.A.: Batch-fabricated silicon capacitive pressure transducer with low-temperature sensitivity. IEEE Trans. Electron Devices 29, 42–48 (1982)CrossRef Lee, Y.; Wise, K.A.: Batch-fabricated silicon capacitive pressure transducer with low-temperature sensitivity. IEEE Trans. Electron Devices 29, 42–48 (1982)CrossRef
7.
Zurück zum Zitat Hierold, C.; Clasbrummel, B.; Behrend, D.; Scheiter, T.; Steger, M.; Oppermann, K.; Kapels, H.; Landgraf, E.; Wenzel, D.; Etzrodt, D.: Low power integrated pressure sensor system for medical applications. Sens. Actuators A Phys. 73, 58–67 (1999)CrossRef Hierold, C.; Clasbrummel, B.; Behrend, D.; Scheiter, T.; Steger, M.; Oppermann, K.; Kapels, H.; Landgraf, E.; Wenzel, D.; Etzrodt, D.: Low power integrated pressure sensor system for medical applications. Sens. Actuators A Phys. 73, 58–67 (1999)CrossRef
8.
Zurück zum Zitat Palasagaram, J.N.; Ramadoss, R.: MEMS-capacitive pressure sensor fabricated using printed-circuit-processing techniques. IEEE Sens. J. 6, 1374–1375 (2006)CrossRef Palasagaram, J.N.; Ramadoss, R.: MEMS-capacitive pressure sensor fabricated using printed-circuit-processing techniques. IEEE Sens. J. 6, 1374–1375 (2006)CrossRef
9.
Zurück zum Zitat Van Der Heyden, F.; Blom, M.; Gardeniers, J.; Chmela, E.; Elwenspoek, M.; Tijssen, R.; Berg, A.V.D.: A low hydraulic capacitance pressure sensor for integration with a microviscosity detector. Sens. Actuators B Chem. 92, 102–109 (2003)CrossRef Van Der Heyden, F.; Blom, M.; Gardeniers, J.; Chmela, E.; Elwenspoek, M.; Tijssen, R.; Berg, A.V.D.: A low hydraulic capacitance pressure sensor for integration with a microviscosity detector. Sens. Actuators B Chem. 92, 102–109 (2003)CrossRef
10.
Zurück zum Zitat Xu, M.; Geiger, H.; Dakin, J.: Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing. Electron. Lett. 32, 128 (1996)CrossRef Xu, M.; Geiger, H.; Dakin, J.: Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing. Electron. Lett. 32, 128 (1996)CrossRef
11.
Zurück zum Zitat Arkwright, J.W.; Underhill, I.D.; Maunder, S.A.; Jafari, A.; Cartwright, N.; Lemckert, C.: Fiber optic pressure sensing arrays for monitoring horizontal and vertical pressures generated by traveling water waves. IEEE Sens. J. 14, 2739–2742 (2014)CrossRef Arkwright, J.W.; Underhill, I.D.; Maunder, S.A.; Jafari, A.; Cartwright, N.; Lemckert, C.: Fiber optic pressure sensing arrays for monitoring horizontal and vertical pressures generated by traveling water waves. IEEE Sens. J. 14, 2739–2742 (2014)CrossRef
12.
Zurück zum Zitat Xu, J.; Wang, X.; Cooper, K.L.; Wang, A.: Miniature all-silica fiber optic pressure and acoustic sensors. Opt. Lett. 30, 3269–3271 (2005)CrossRef Xu, J.; Wang, X.; Cooper, K.L.; Wang, A.: Miniature all-silica fiber optic pressure and acoustic sensors. Opt. Lett. 30, 3269–3271 (2005)CrossRef
13.
Zurück zum Zitat Sabry, Y.M.; Khalil, D.; Bourouina, T.: Monolithic silicon-micromachined free-space optical interferometers on-chip. Laser Photonics Rev. 9, 1–24 (2015)CrossRef Sabry, Y.M.; Khalil, D.; Bourouina, T.: Monolithic silicon-micromachined free-space optical interferometers on-chip. Laser Photonics Rev. 9, 1–24 (2015)CrossRef
14.
Zurück zum Zitat Zhang, D.; Wang, M.; Yang, Z.: Facile fabrication of graphene oxide/Nafion/indium oxide for humidity sensing with highly sensitive capacitance response. Sens. Actuators B Chem. 292, 187–195 (2019)CrossRef Zhang, D.; Wang, M.; Yang, Z.: Facile fabrication of graphene oxide/Nafion/indium oxide for humidity sensing with highly sensitive capacitance response. Sens. Actuators B Chem. 292, 187–195 (2019)CrossRef
15.
Zurück zum Zitat Zhang, S.; Zhang, L.; Wang, L.; Wang, F.; Pan, G.A.: Flexible e-skin based on micro-structured PZT thin films prepared via a low-temperature PLD method. J. Mater. Chem. 7, 4760–4769 (2019) Zhang, S.; Zhang, L.; Wang, L.; Wang, F.; Pan, G.A.: Flexible e-skin based on micro-structured PZT thin films prepared via a low-temperature PLD method. J. Mater. Chem. 7, 4760–4769 (2019)
16.
Zurück zum Zitat Akiyama, M.; Morofuji, Y.; Kamohara, T.; Nishikubo, K.; Tsubai, M.; Fukuda, O.; Ueno, N.: Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J. Appl. Phys. 100, 114318 (2006)CrossRef Akiyama, M.; Morofuji, Y.; Kamohara, T.; Nishikubo, K.; Tsubai, M.; Fukuda, O.; Ueno, N.: Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J. Appl. Phys. 100, 114318 (2006)CrossRef
17.
Zurück zum Zitat Toprak, A.; Tigli, O.: Piezoelectric energy harvesting: State-of-the-art and challenges. Appl. Phys. Rev. 1, 31104 (2014)CrossRef Toprak, A.; Tigli, O.: Piezoelectric energy harvesting: State-of-the-art and challenges. Appl. Phys. Rev. 1, 31104 (2014)CrossRef
18.
Zurück zum Zitat Wei, H.; Wang, H.; Xia, Y.; Cui, D.; Shi, Y.; Dong, M.; Liu, C.; Ding, T.; Zhan, J.-X.; Ma, Y., et al.: An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. 6, 12446–12467 (2018) Wei, H.; Wang, H.; Xia, Y.; Cui, D.; Shi, Y.; Dong, M.; Liu, C.; Ding, T.; Zhan, J.-X.; Ma, Y., et al.: An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. 6, 12446–12467 (2018)
19.
Zurück zum Zitat Santosh Kumar, S.; Pant, B.D.: Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review. Microsyst. Technol. 20, 1213–1247 (2014)CrossRef Santosh Kumar, S.; Pant, B.D.: Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review. Microsyst. Technol. 20, 1213–1247 (2014)CrossRef
20.
Zurück zum Zitat Tsai, H.H.; Hsieh, C.C.; Fan, C.W.; Chen, Y.C.; Wu, W.T.: Design and characterization of temperature-robust piezoresistive micropressure sensor with double wheatstone-bridge structure. Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS, Rome, Italy (2009) Tsai, H.H.; Hsieh, C.C.; Fan, C.W.; Chen, Y.C.; Wu, W.T.: Design and characterization of temperature-robust piezoresistive micropressure sensor with double wheatstone-bridge structure. Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS, Rome, Italy (2009)
21.
Zurück zum Zitat Burg, B.R.; Helbling, R.; Hierold, C.; Poulikakos, D.: Piezoresistive pressure sensors with parallel integration of individual single-walled carbon nanotube. J. Appl. Phys. 109(6), 064310 (2011)CrossRef Burg, B.R.; Helbling, R.; Hierold, C.; Poulikakos, D.: Piezoresistive pressure sensors with parallel integration of individual single-walled carbon nanotube. J. Appl. Phys. 109(6), 064310 (2011)CrossRef
22.
Zurück zum Zitat Zhang, Y.H.; Yang, C.; Zhang, Z.H.; Hw, L.; Liu, L.T.; Ren, T.L.: A novel pressure microsensor with 30-μm-thick diaphragm and meander-shaped piezoresistors partially distributed on high stress bulk silicon region. IEEE Sens. J. 7(12), 1742–1748 (2007)CrossRef Zhang, Y.H.; Yang, C.; Zhang, Z.H.; Hw, L.; Liu, L.T.; Ren, T.L.: A novel pressure microsensor with 30-μm-thick diaphragm and meander-shaped piezoresistors partially distributed on high stress bulk silicon region. IEEE Sens. J. 7(12), 1742–1748 (2007)CrossRef
23.
Zurück zum Zitat Chen, S.; Zhu, M.Q.; Ma, B.H.; Yuan, W. Z.: Design and optimization of micro piezoresistive pressure sensor. 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China (2008) Chen, S.; Zhu, M.Q.; Ma, B.H.; Yuan, W. Z.: Design and optimization of micro piezoresistive pressure sensor. 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China (2008)
24.
Zurück zum Zitat Song, P.; Ma, Z.; Ma, J.; Yang, L., et al.: Recent progress of miniature MEMS sensors. Micromachines 11, 56 (2020)CrossRef Song, P.; Ma, Z.; Ma, J.; Yang, L., et al.: Recent progress of miniature MEMS sensors. Micromachines 11, 56 (2020)CrossRef
25.
Zurück zum Zitat Ghanbari, M.; Hossainpour, S.; Rezazadeh, G.: On the modeling of a piezoelectrically actuated microsensor for measurement of micro-scale fluid physical properties. Appl. Phys. A 121(2), 651–663 (2015)CrossRef Ghanbari, M.; Hossainpour, S.; Rezazadeh, G.: On the modeling of a piezoelectrically actuated microsensor for measurement of micro-scale fluid physical properties. Appl. Phys. A 121(2), 651–663 (2015)CrossRef
28.
Zurück zum Zitat Ghanbari, M.; Rezazadeh, G.: A liquid-state high sensitive accelerometer based on a micro-scale liquid marble. Microsyst. Technol. 26, 617–623 (2020)CrossRef Ghanbari, M.; Rezazadeh, G.: A liquid-state high sensitive accelerometer based on a micro-scale liquid marble. Microsyst. Technol. 26, 617–623 (2020)CrossRef
29.
Zurück zum Zitat Paliwal, S.; Yenuganti, S.: Design and simulation of digital output MEMS pressure sensor. Arab. J. Sci. Eng. 45, 6661–6673 (2020)CrossRef Paliwal, S.; Yenuganti, S.: Design and simulation of digital output MEMS pressure sensor. Arab. J. Sci. Eng. 45, 6661–6673 (2020)CrossRef
30.
Zurück zum Zitat Sathyanarayanan, S.; Juliet, A.V.: Modeling and Analyses of thin film PolySi diaphragm pressure sensor. Arab. J. Sci. Eng. 38, 679–683 (2013)CrossRef Sathyanarayanan, S.; Juliet, A.V.: Modeling and Analyses of thin film PolySi diaphragm pressure sensor. Arab. J. Sci. Eng. 38, 679–683 (2013)CrossRef
31.
Zurück zum Zitat Chau, H.L.; Wise, K.D.: An ultraminiature solid-state pressure sensor for a cardiovascular catheter. IEEE Trans. Electron Devices 35, 2355 (1998)CrossRef Chau, H.L.; Wise, K.D.: An ultraminiature solid-state pressure sensor for a cardiovascular catheter. IEEE Trans. Electron Devices 35, 2355 (1998)CrossRef
32.
Zurück zum Zitat Kalvesten, E.; Smith, L.; Tenerz, L.; Stemme, G.: The first surface micromachined pressure sensor for cardiovascular pressure measurements. In Proceedings of the Eleventh Annual International Workshop on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176), Heidelberg, Germany, 25–29 January :574–579 (1998) Kalvesten, E.; Smith, L.; Tenerz, L.; Stemme, G.: The first surface micromachined pressure sensor for cardiovascular pressure measurements. In Proceedings of the Eleventh Annual International Workshop on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176), Heidelberg, Germany, 25–29 January :574–579 (1998)
33.
Zurück zum Zitat Allen, H.; Ramzan, K.; Withers, S.; Knutti, J.: A Novel Ultra-miniature catheter tip pressure sensor fabricated using silicon and glass thinning techniques. MRS Proc, 681 (2001) Allen, H.; Ramzan, K.; Withers, S.; Knutti, J.: A Novel Ultra-miniature catheter tip pressure sensor fabricated using silicon and glass thinning techniques. MRS Proc, 681 (2001)
34.
Zurück zum Zitat Melvås, P.; Kälvesten, E.; Stemme, G.A.: temperature compensated dual beam pressure sensor. Sens. Actuators A Phys. 100, 46–53 (2002)CrossRef Melvås, P.; Kälvesten, E.; Stemme, G.A.: temperature compensated dual beam pressure sensor. Sens. Actuators A Phys. 100, 46–53 (2002)CrossRef
35.
Zurück zum Zitat Melvås, P.; Kälvesten, E.; Enoksson, P.; Stemme G.: Miniaturized pressure sensor using a free hanging strain-gauge with leverage effect for increased sensitivity. In Transducers ’01 Eurosensors XV: The 11th International Conference on Solid-State Sensors and Actuators, 10–14 June 2001, Munich, Germany; Springer: Berlin/Heidelberg, Germany: 494–497 (2001) Melvås, P.; Kälvesten, E.; Enoksson, P.; Stemme G.: Miniaturized pressure sensor using a free hanging strain-gauge with leverage effect for increased sensitivity. In Transducers ’01 Eurosensors XV: The 11th International Conference on Solid-State Sensors and Actuators, 10–14 June 2001, Munich, Germany; Springer: Berlin/Heidelberg, Germany: 494–497 (2001)
36.
Zurück zum Zitat Eswaran, P.; Malarvizhi, S.: Design analysis of MEMS capacitive differential pressure sensor for aircraft altimeter. Int. J. Appl. Phys. Math. 2, 14–20 (2012)CrossRef Eswaran, P.; Malarvizhi, S.: Design analysis of MEMS capacitive differential pressure sensor for aircraft altimeter. Int. J. Appl. Phys. Math. 2, 14–20 (2012)CrossRef
37.
Zurück zum Zitat Eswaran, P.; Malarvizhi, S.: Simulation analysis of MEMS based capacitive differential pressure sensor for aircraft application. Adv. Mater. Res. 403, 4152–4156 (2011)CrossRef Eswaran, P.; Malarvizhi, S.: Simulation analysis of MEMS based capacitive differential pressure sensor for aircraft application. Adv. Mater. Res. 403, 4152–4156 (2011)CrossRef
38.
Zurück zum Zitat Chen, H.; Buric, M.; Ohodnicki, P.R.; Nakano, J.; Liu, B.; Chorpening, B.T.: Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing. Appl. Phys. Rev. 5, 11102 (2018)CrossRef Chen, H.; Buric, M.; Ohodnicki, P.R.; Nakano, J.; Liu, B.; Chorpening, B.T.: Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing. Appl. Phys. Rev. 5, 11102 (2018)CrossRef
39.
Zurück zum Zitat Corradetti, A.; Leoni, R.; Carluccio, R.; Fortunato, G.; Reita, C.; Plais, F.; Pribat, D.: Evidence of carrier number fluctuation as origin of 1/f noise in polycrystalline silicon thin film transistors. Appl. Phys. Lett. 67, 1730–1732 (1995)CrossRef Corradetti, A.; Leoni, R.; Carluccio, R.; Fortunato, G.; Reita, C.; Plais, F.; Pribat, D.: Evidence of carrier number fluctuation as origin of 1/f noise in polycrystalline silicon thin film transistors. Appl. Phys. Lett. 67, 1730–1732 (1995)CrossRef
40.
Zurück zum Zitat DelRio, F.W.; Cook, R.F.; Boyce, B.L.: Fracture strength of micro- and nano-scale silicon components. Appl. Phys. Rev. 2, 021303 (2015)CrossRef DelRio, F.W.; Cook, R.F.; Boyce, B.L.: Fracture strength of micro- and nano-scale silicon components. Appl. Phys. Rev. 2, 021303 (2015)CrossRef
41.
Zurück zum Zitat Bhat, K.; Nayak, M.: MEMS pressure sensors-an overview of challenges in technology and packaging. Smart Struct. Syst. 2, 1–10 (2013) Bhat, K.; Nayak, M.: MEMS pressure sensors-an overview of challenges in technology and packaging. Smart Struct. Syst. 2, 1–10 (2013)
42.
Zurück zum Zitat Soltani, K.; Bushuev, O.Y.; Tugova, E.; Ghanbari, M.; Henry, M.P.; Rezazadeh, G.: Modelling Fluid Loss Faults in an Industrial Pressure Sensor, IEE Global Smart Industry Conference, Chelyabinsk, Russia (2020) Soltani, K.; Bushuev, O.Y.; Tugova, E.; Ghanbari, M.; Henry, M.P.; Rezazadeh, G.: Modelling Fluid Loss Faults in an Industrial Pressure Sensor, IEE Global Smart Industry Conference, Chelyabinsk, Russia (2020)
43.
Zurück zum Zitat Lin, L.; Chu, H.C.; Lu, Y.W.: A simulation program for the sensitivity and linearity of piezoresistive pressure sensors. J. Microelectromech. Syst. 8(4), 514–522 (1999)CrossRef Lin, L.; Chu, H.C.; Lu, Y.W.: A simulation program for the sensitivity and linearity of piezoresistive pressure sensors. J. Microelectromech. Syst. 8(4), 514–522 (1999)CrossRef
44.
Zurück zum Zitat Rao, S.S.: Vibration of continuous systems, p. 14. Wiley, NY (2007) Rao, S.S.: Vibration of continuous systems, p. 14. Wiley, NY (2007)
45.
Zurück zum Zitat Velzen, D.V.; Cardozo, R.L.; Langenkamp, H.: A liquid viscosity-temperature-chemical constitution relation for organic components. Ind. Eng. Chem. Fundam. 11(1), 20–25 (1972)CrossRef Velzen, D.V.; Cardozo, R.L.; Langenkamp, H.: A liquid viscosity-temperature-chemical constitution relation for organic components. Ind. Eng. Chem. Fundam. 11(1), 20–25 (1972)CrossRef
Metadaten
Titel
Investigating Static and Dynamic Behavior of the Strain Gauge Type Pressure Sensor in Exposure to Thermal Stresses
verfasst von
Mina Ghanbari
Ghader Rezazadeh
Publikationsdatum
20.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 7/2022
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06443-4

Weitere Artikel der Ausgabe 7/2022

Arabian Journal for Science and Engineering 7/2022 Zur Ausgabe

RESEARCH ARTICLE - SPECIAL ISSUE - Impact of Advanced Tribological Technologies on Modern Industry

Multi-Objective Optimization of WEDM of Aluminum Hybrid Composites Using AHP and Genetic Algorithm

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.