Skip to main content
Erschienen in: Experimental Mechanics 1/2018

28.08.2017

Investigation into Electromechanical Properties of Biocompatible Chitosan-Based Ionic Actuator

verfasst von: Z. Sun, G. Zhao, W. L. Song, J. Wang, M. Ui Haq

Erschienen in: Experimental Mechanics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ionic actuators have attracted much attention due to their remarkably large strain under low-voltage stimulation. Here, we investigate a highly biocompatible ionic polymer actuator, which consists of multi-walled carbon nanotube (MCNT) film as a double electrode layer and an electrolyte layer equipped with chitosan polymer skeleton and ionic liquid. As a result, with the thickness increase of the electrolyte layer and the electrode layer, the membrane capacitance values are obviously improved, which are 0.01 F (membrane thickness of 1.3 mm) and 0.4 F (0.25 mm). The blocking force and its response speed show peak values of 5.75 mN (1.1 mm) and 5.1 mN (0.25 mm), while reverse increases for the displacement and its response speed are observed, which present maximum values of 10.3 mm (0.3 mm) and 13.3 mm (0.15 mm). Furthermore, for various thicknesses of the electrode layers under applied direct current of 5 V, the generated strain of 0.15 mm thickness (59%) is 4.92 times greater than that of the 0.25 mm thickness. This is against the strain difference on the electrode surface due to the growing stiffness of the electrode layer. Additionally, from the experiments of the electromechanical energy efficiency of various electrode layers and electrolyte layers, our actuator exhibits excellent electromechanical energy efficiency under a high electrical conductivity of the electrode layer, which enhance the specific electromechanical energy up to 9.95%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Inganäs O, Lundstrüm I (1999) Carbon nanotube muscles. Science 284(5418):1281–1282CrossRef Inganäs O, Lundstrüm I (1999) Carbon nanotube muscles. Science 284(5418):1281–1282CrossRef
2.
Zurück zum Zitat Jager EWH, Smela E, Inganäs O (2000) Microfabricating conjugated polymer actuators. Science 290(5496):1540–1545CrossRef Jager EWH, Smela E, Inganäs O (2000) Microfabricating conjugated polymer actuators. Science 290(5496):1540–1545CrossRef
3.
Zurück zum Zitat Zhang QM, Li H, Poh M (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419(6904):284–287CrossRef Zhang QM, Li H, Poh M (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419(6904):284–287CrossRef
4.
Zurück zum Zitat Ma M, Guo L, Anderson DG (2013) Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339(6116):186–189CrossRef Ma M, Guo L, Anderson DG (2013) Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339(6116):186–189CrossRef
5.
Zurück zum Zitat Yu Y, Nakano M, Ikeda T (2003) Photomechanics: directed bending of a polymer film by light. Nature 425(6954):145–145CrossRef Yu Y, Nakano M, Ikeda T (2003) Photomechanics: directed bending of a polymer film by light. Nature 425(6954):145–145CrossRef
6.
Zurück zum Zitat Enikov ET, Seo GS (2005) Experimental analysis of current and deformation of ion-exchange polymer metal composite actuators. Exp Mech 45(4):383–391CrossRef Enikov ET, Seo GS (2005) Experimental analysis of current and deformation of ion-exchange polymer metal composite actuators. Exp Mech 45(4):383–391CrossRef
7.
Zurück zum Zitat Mukai K, Asaka K, Sugino T (2009) Highly Conductive Sheets from Millimeter-Long Single-Walled Carbon Nanotubes and Ionic Liquids: Application to Fast-Moving, Low-Voltage Electromechanical Actuators Operable in Air. Adv Mater 21(16):1582–1585CrossRef Mukai K, Asaka K, Sugino T (2009) Highly Conductive Sheets from Millimeter-Long Single-Walled Carbon Nanotubes and Ionic Liquids: Application to Fast-Moving, Low-Voltage Electromechanical Actuators Operable in Air. Adv Mater 21(16):1582–1585CrossRef
8.
Zurück zum Zitat Jung JH, Jeon JH, Sridhar V (2011) Electro-active graphene–Nafion actuators. Carbon 49(4):1279–1289CrossRef Jung JH, Jeon JH, Sridhar V (2011) Electro-active graphene–Nafion actuators. Carbon 49(4):1279–1289CrossRef
9.
Zurück zum Zitat Friend RH, Gymer RW, Holmes AB (1999) Electroluminescence in conjugated polymers. Nature 397(6715):121–128CrossRef Friend RH, Gymer RW, Holmes AB (1999) Electroluminescence in conjugated polymers. Nature 397(6715):121–128CrossRef
10.
Zurück zum Zitat Palmre V, Hubbard JJ, Fleming M (2012) An IPMC-enabled bio-inspired bending/twisting fin for underwater applications. Smart Mater Struct 22(1):014003CrossRef Palmre V, Hubbard JJ, Fleming M (2012) An IPMC-enabled bio-inspired bending/twisting fin for underwater applications. Smart Mater Struct 22(1):014003CrossRef
11.
Zurück zum Zitat Fennimore AM, Yuzvinsky TD, Han WQ (2003) Rotational actuators based on carbon nanotubes. Nature 424(6947):408–410CrossRef Fennimore AM, Yuzvinsky TD, Han WQ (2003) Rotational actuators based on carbon nanotubes. Nature 424(6947):408–410CrossRef
12.
Zurück zum Zitat Lv S, Dudek DM, Cao Y (2010) Designed biomaterials to mimic the mechanical properties of muscles. Nature 465(7294):69–73CrossRef Lv S, Dudek DM, Cao Y (2010) Designed biomaterials to mimic the mechanical properties of muscles. Nature 465(7294):69–73CrossRef
13.
Zurück zum Zitat Chaikof EL (2010) Materials science: Muscle mimic. Nature 465(7294):44–45CrossRef Chaikof EL (2010) Materials science: Muscle mimic. Nature 465(7294):44–45CrossRef
14.
Zurück zum Zitat Lu L, Liu J, Hu Y (2012) Highly stable air working bimorph actuator based on a graphene nanosheet/carbon nanotube hybrid electrode. Adv Mater 24(31):4317–4321CrossRef Lu L, Liu J, Hu Y (2012) Highly stable air working bimorph actuator based on a graphene nanosheet/carbon nanotube hybrid electrode. Adv Mater 24(31):4317–4321CrossRef
15.
Zurück zum Zitat Li J, Ma W, Song L (2011) Superfast-response and ultrahigh power density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett 11(11):4636–4641CrossRef Li J, Ma W, Song L (2011) Superfast-response and ultrahigh power density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett 11(11):4636–4641CrossRef
16.
Zurück zum Zitat Lu L, Chen W (2010) Biocompatible composite actuator: a supramolecular structure consisting of the biopolymer chitosan, carbon nanotubes, and an ionic liquid. Ad Mater 22(33):3745–3748CrossRef Lu L, Chen W (2010) Biocompatible composite actuator: a supramolecular structure consisting of the biopolymer chitosan, carbon nanotubes, and an ionic liquid. Ad Mater 22(33):3745–3748CrossRef
17.
Zurück zum Zitat Kim J, Wang N, Chen Y (2007) Effect of chitosan and ions on actuation behavior of cellulose–chitosan laminated films as electro-active paper actuators. Cellulose 14(5):439–445CrossRef Kim J, Wang N, Chen Y (2007) Effect of chitosan and ions on actuation behavior of cellulose–chitosan laminated films as electro-active paper actuators. Cellulose 14(5):439–445CrossRef
18.
Zurück zum Zitat Yoshioka Y, Calvert P (2002) Epoxy-based electroactive polymer gels. Exp Mech 42(4):404–408CrossRef Yoshioka Y, Calvert P (2002) Epoxy-based electroactive polymer gels. Exp Mech 42(4):404–408CrossRef
19.
Zurück zum Zitat Spinks GM, Shin SR, Wallace GG (2006) Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sensor Actuat B-Chem 115(2):678–684CrossRef Spinks GM, Shin SR, Wallace GG (2006) Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sensor Actuat B-Chem 115(2):678–684CrossRef
20.
Zurück zum Zitat Li MC, Zhang Y, Cho UR (2014) Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: Influence of particle size and loading. Mater Design 63:565–574CrossRef Li MC, Zhang Y, Cho UR (2014) Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: Influence of particle size and loading. Mater Design 63:565–574CrossRef
21.
Zurück zum Zitat Richard C, Balavoine F, Schultz P (2003) Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300(5620):775–778CrossRef Richard C, Balavoine F, Schultz P (2003) Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300(5620):775–778CrossRef
22.
Zurück zum Zitat Tu X, Manohar S, Jagota A (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460(7252):250–253CrossRef Tu X, Manohar S, Jagota A (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460(7252):250–253CrossRef
23.
Zurück zum Zitat Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28(2):344–353CrossRef Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28(2):344–353CrossRef
24.
Zurück zum Zitat Liu Y, Tang J, Chen X (2005) Decoration of carbon nanotubes with chitosan. Carbon 43(15):3178–3180CrossRef Liu Y, Tang J, Chen X (2005) Decoration of carbon nanotubes with chitosan. Carbon 43(15):3178–3180CrossRef
25.
Zurück zum Zitat Carson L, Kelly-Brown C, Stewart M (2009) Synthesis and characterization of chitosan–carbon nanotube composites. Mater Lett 63(6):617–620CrossRef Carson L, Kelly-Brown C, Stewart M (2009) Synthesis and characterization of chitosan–carbon nanotube composites. Mater Lett 63(6):617–620CrossRef
26.
Zurück zum Zitat Çilingir HD, Papila M (2010) “Equivalent” Electromechanical Coefficient for IPMC Actuator Design Based on Equivalent Bimorph Beam Theory. Exp Mech 50(8):1157–1168CrossRef Çilingir HD, Papila M (2010) “Equivalent” Electromechanical Coefficient for IPMC Actuator Design Based on Equivalent Bimorph Beam Theory. Exp Mech 50(8):1157–1168CrossRef
27.
Zurück zum Zitat Cantrell JT, Ifju PG (2015) Experimental characterization of unimorph shape memory polymer actuators incorporating transverse curvature in the substrate. Exp Mech 55(8):1395–1409CrossRef Cantrell JT, Ifju PG (2015) Experimental characterization of unimorph shape memory polymer actuators incorporating transverse curvature in the substrate. Exp Mech 55(8):1395–1409CrossRef
28.
Zurück zum Zitat Lu L, Chen W (2011) Supramolecular self-assembly of biopolymers with carbon nanotubes for biomimetic and bio-inspired sensing and actuation. Nano 3(6):2412–2420 Lu L, Chen W (2011) Supramolecular self-assembly of biopolymers with carbon nanotubes for biomimetic and bio-inspired sensing and actuation. Nano 3(6):2412–2420
29.
Zurück zum Zitat Fukushima T, Kosaka A, Ishimura Y (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300(5628):2072–2074CrossRef Fukushima T, Kosaka A, Ishimura Y (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300(5628):2072–2074CrossRef
30.
Zurück zum Zitat Fukushima T, Asaka K, Kosaka A (2005) Fully Plastic Actuator through Layer-by-Layer Casting with Ionic-Liquid-Based Bucky Gel. Angew Chem Int Ed 44(16):2410–2413CrossRef Fukushima T, Asaka K, Kosaka A (2005) Fully Plastic Actuator through Layer-by-Layer Casting with Ionic-Liquid-Based Bucky Gel. Angew Chem Int Ed 44(16):2410–2413CrossRef
31.
Zurück zum Zitat Fukushima T, Kosaka A, Yamamoto Y (2006) Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids. Small 2(4):554–560CrossRef Fukushima T, Kosaka A, Yamamoto Y (2006) Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids. Small 2(4):554–560CrossRef
32.
Zurück zum Zitat Sun Z, Zhao G, Guo H (2015) Investigation into the actuating properties of ionic polymer metal composites using various electrolytes. Ionics 21(6):1577–1586CrossRef Sun Z, Zhao G, Guo H (2015) Investigation into the actuating properties of ionic polymer metal composites using various electrolytes. Ionics 21(6):1577–1586CrossRef
33.
Zurück zum Zitat Takeuchi I, Asaka K, Kiyohara K (2009) Electromechanical behavior of fully plastic actuators based on bucky gel containing various internal ionic liquids. Electrochim Acta 54(6):1762–1768CrossRef Takeuchi I, Asaka K, Kiyohara K (2009) Electromechanical behavior of fully plastic actuators based on bucky gel containing various internal ionic liquids. Electrochim Acta 54(6):1762–1768CrossRef
34.
Zurück zum Zitat Oh IK, Jung JH, Jeon JH (2010) Electro-chemo-mechanical characteristics of fullerene-reinforced ionic polymer–metal composite transducers. Smart Mater Struct 19(7):075009CrossRef Oh IK, Jung JH, Jeon JH (2010) Electro-chemo-mechanical characteristics of fullerene-reinforced ionic polymer–metal composite transducers. Smart Mater Struct 19(7):075009CrossRef
Metadaten
Titel
Investigation into Electromechanical Properties of Biocompatible Chitosan-Based Ionic Actuator
verfasst von
Z. Sun
G. Zhao
W. L. Song
J. Wang
M. Ui Haq
Publikationsdatum
28.08.2017
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 1/2018
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-017-0332-9

Weitere Artikel der Ausgabe 1/2018

Experimental Mechanics 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.