Skip to main content
Erschienen in: Experimental Mechanics 8/2010

01.10.2010

“Equivalent” Electromechanical Coefficient for IPMC Actuator Design Based on Equivalent Bimorph Beam Theory

verfasst von: H. D. Çilingir, M. Papila

Erschienen in: Experimental Mechanics | Ausgabe 8/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper addresses an “equivalent” electromechanical coupling coefficient that may be used in designing Ionic Polymer Metal Composite (IPMC) actuators. The coefficient is not a material constant and derived from equivalent bimorph beam model. The collective effect of the membrane thickness and operating voltage on the coefficient is demonstrated by using a design of experiment (DOE) of three and five levels of the two factors, respectively. Experiments and linear finite element analyses with MD.NASTRAN at DOE points are performed. The tip displacement and the coupling coefficient are reported and their response surface (RS) approximations as function of the thickness and voltage are constructed. Experiments and RS predictions indicate that actuator thickness and applied voltage are two interacting major factors for maximum tip displacement. The equivalent coupling coefficient is primarily driven by the thickness of actuator moreover voltage appears to contribute as the thickness increases. The initial curvature of the strips before electrical excitation is also shown to be a factor for “equivalent” coupling coefficient, it is not, however sufficient to explain the variation in the experimental data. A correction factor approach is proposed and applied to the straight beam tip displacement RS that filters out experimental variation. A corrected RS enables including the pre-imposed initial curvature as design parameter along with the actuator thickness and the operating peak voltage when predicting the tip displacement and the equivalent coupling coefficient.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bar-Cohen Y, Zhang Q (2008) Electroactive polymer actuators and sensors. MRS Bulletin 33:173–182 Bar-Cohen Y, Zhang Q (2008) Electroactive polymer actuators and sensors. MRS Bulletin 33:173–182
2.
Zurück zum Zitat Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles. Smart Mater Struct 7:15–30CrossRef Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles. Smart Mater Struct 7:15–30CrossRef
3.
Zurück zum Zitat Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites: I. Fundamentals. Smart Mater Struct 10:819–833CrossRef Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites: I. Fundamentals. Smart Mater Struct 10:819–833CrossRef
4.
Zurück zum Zitat Shahinpoor M, Kim KJ (2005) Ionic polymer-metal composites: IV. Industrial and medical applications. Smart Mater Struct 14:197–214CrossRef Shahinpoor M, Kim KJ (2005) Ionic polymer-metal composites: IV. Industrial and medical applications. Smart Mater Struct 14:197–214CrossRef
5.
Zurück zum Zitat Bar-Cohen Y (2000) Artificial muscles using electroactive polymers (EAP): capabilities, challenges and potential. artificial muscles using electroactive polymers (EAP). Available via http://hdl.handle.net/2014/18826. Accessed 05 August 2009. Bar-Cohen Y (2000) Artificial muscles using electroactive polymers (EAP): capabilities, challenges and potential. artificial muscles using electroactive polymers (EAP). Available via http://​hdl.​handle.​net/​2014/​18826. Accessed 05 August 2009.
6.
Zurück zum Zitat Bar-Cohen Y (2001) Transition of EAP material from novelty to practical applications- are we there yet? In: Proceedings of SPIE EAPAD, SPIE's 8th annual ınternational symposium on smart structures and materials. no. 4329-02. Bar-Cohen Y (2001) Transition of EAP material from novelty to practical applications- are we there yet? In: Proceedings of SPIE EAPAD, SPIE's 8th annual ınternational symposium on smart structures and materials. no. 4329-02.
7.
Zurück zum Zitat Nemat-Nasser S, Wu Y (2006) Tailoring the actuation of ionic polymer-metal composites. Smart Mater Struct 15:909–923CrossRef Nemat-Nasser S, Wu Y (2006) Tailoring the actuation of ionic polymer-metal composites. Smart Mater Struct 15:909–923CrossRef
8.
Zurück zum Zitat Nemat-Nasser S, Thomas C (2001) In: Bar-Cohen Y (ed) Electroactive polymer (EAP) actuators as artificial muscles—reality, potential and challenges, SPIE, Bellingham, WA, pp 139–191. Nemat-Nasser S, Thomas C (2001) In: Bar-Cohen Y (ed) Electroactive polymer (EAP) actuators as artificial muscles—reality, potential and challenges, SPIE, Bellingham, WA, pp 139–191.
9.
Zurück zum Zitat Lee JH, Nam JD, Choib H, Jung K, Jeon JW, Lee YK, Kim KJ, Tak Y (2005) Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator. Sens Actuators A 118:98–106CrossRef Lee JH, Nam JD, Choib H, Jung K, Jeon JW, Lee YK, Kim KJ, Tak Y (2005) Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator. Sens Actuators A 118:98–106CrossRef
10.
Zurück zum Zitat Gierke TD, Munn GE, Wilson FC (1981) The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J Polym Sci Polym Phys Ed 19:1687–1704CrossRef Gierke TD, Munn GE, Wilson FC (1981) The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J Polym Sci Polym Phys Ed 19:1687–1704CrossRef
11.
Zurück zum Zitat Hsu WY, Gierke TD (1982) Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules 15:101–105CrossRef Hsu WY, Gierke TD (1982) Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules 15:101–105CrossRef
12.
Zurück zum Zitat Roche EJ, Pineri M, Duplessix R, Levelut AM (1981) Small-angle scattering studies of Nafion membranes. J Polym Sci Polym Phys Ed 19(1):1–11CrossRef Roche EJ, Pineri M, Duplessix R, Levelut AM (1981) Small-angle scattering studies of Nafion membranes. J Polym Sci Polym Phys Ed 19(1):1–11CrossRef
13.
Zurück zum Zitat Xue T, Trent JS, Osseo-Asare K (1989) Characterization of Nafion membranes by transmission electron microscopy. J Membr Sci 45(3):261–271CrossRef Xue T, Trent JS, Osseo-Asare K (1989) Characterization of Nafion membranes by transmission electron microscopy. J Membr Sci 45(3):261–271CrossRef
14.
Zurück zum Zitat Xue T, Longwell RB, Osseo-Asare K (1991) Mass transfer in Nafion membrane systems: effects of ionic size and charge on selectivity. J Membr Sci 58(2):175–189CrossRef Xue T, Longwell RB, Osseo-Asare K (1991) Mass transfer in Nafion membrane systems: effects of ionic size and charge on selectivity. J Membr Sci 58(2):175–189CrossRef
15.
Zurück zum Zitat James PJ, Elliott JA, McMaster TJ, Newton JM, Elliott AMS, Hanna S, Miles MJ (2000) Hydration of Nafion studied by AFM and x-ray scattering. J Mater Sci 35(20):5111–5119CrossRef James PJ, Elliott JA, McMaster TJ, Newton JM, Elliott AMS, Hanna S, Miles MJ (2000) Hydration of Nafion studied by AFM and x-ray scattering. J Mater Sci 35(20):5111–5119CrossRef
16.
Zurück zum Zitat Nemat-Nasser S (2002) Micromechanics of actuation of ıonic polymer-metal composites. J Appl Phys 92(5):2899–2915CrossRef Nemat-Nasser S (2002) Micromechanics of actuation of ıonic polymer-metal composites. J Appl Phys 92(5):2899–2915CrossRef
17.
Zurück zum Zitat Nemat-Nasser S, Li JY (2000) Electromechanical response of ionic polymer metal composites. J Appl Phys 87(7):3321–3331CrossRef Nemat-Nasser S, Li JY (2000) Electromechanical response of ionic polymer metal composites. J Appl Phys 87(7):3321–3331CrossRef
18.
Zurück zum Zitat Shahinpoor M (1995) Micro-electro-mechanics of ionic polymer gels as electrically controllable artificial muscles. J Intell Mater Syst Struc 6:307–317CrossRef Shahinpoor M (1995) Micro-electro-mechanics of ionic polymer gels as electrically controllable artificial muscles. J Intell Mater Syst Struc 6:307–317CrossRef
19.
Zurück zum Zitat Kanno R, Kurata A, Hattori M, Tadokoro S, Takamori T, Oguro K (1994) Characteristics and modeling of ICPF actuators In: Proceedings of Japan–USA symp. on flexible automation 2:691–698. Kanno R, Kurata A, Hattori M, Tadokoro S, Takamori T, Oguro K (1994) Characteristics and modeling of ICPF actuators In: Proceedings of Japan–USA symp. on flexible automation 2:691–698.
20.
Zurück zum Zitat Kanno R, Hattori M, Tadokoro S, Takamori T (1996) Linear approximate dynamic model of ICPF actuator In: Proceedings of IEEE ınt. conf. on robotics and automation, Piscataway, NJ, IEEE, pp 219–225. Kanno R, Hattori M, Tadokoro S, Takamori T (1996) Linear approximate dynamic model of ICPF actuator In: Proceedings of IEEE ınt. conf. on robotics and automation, Piscataway, NJ, IEEE, pp 219–225.
21.
Zurück zum Zitat DeGennes P, Okumura K, Shahinpoor M, Kim K (2000) Mechanoelectric effects in ionic gels. Europhys Lett 40:513–518CrossRef DeGennes P, Okumura K, Shahinpoor M, Kim K (2000) Mechanoelectric effects in ionic gels. Europhys Lett 40:513–518CrossRef
22.
Zurück zum Zitat Lee S, Park HC, Kim KJ (2005) Equivalent modeling for ionic polymer-metal composite actuators based on beam theories. Smart Mater Struct 14:1363–1368CrossRef Lee S, Park HC, Kim KJ (2005) Equivalent modeling for ionic polymer-metal composite actuators based on beam theories. Smart Mater Struct 14:1363–1368CrossRef
23.
Zurück zum Zitat Bonomo C, Fortuna L, Giannone P, Graziani S, Strazzeri S (2006) A model for ionic polymer metal composites as sensors. Smart Mater Struct 15:749–758CrossRef Bonomo C, Fortuna L, Giannone P, Graziani S, Strazzeri S (2006) A model for ionic polymer metal composites as sensors. Smart Mater Struct 15:749–758CrossRef
24.
Zurück zum Zitat Lee S, Park HC, Kim KJ (2006) Modeling of an IPMC actuator-driven zero-net-mass-flux pump for flow control. J Intel Mater Syst Struct 17:533CrossRef Lee S, Park HC, Kim KJ (2006) Modeling of an IPMC actuator-driven zero-net-mass-flux pump for flow control. J Intel Mater Syst Struct 17:533CrossRef
25.
Zurück zum Zitat Lee S, Kim KJ, Park IS (2007) Modeling and experiment of a muscle-like linear actuator using an ionic polymer-metal composite and its actuation characteristics. Smart Mater Struct 16:583–588CrossRefMathSciNet Lee S, Kim KJ, Park IS (2007) Modeling and experiment of a muscle-like linear actuator using an ionic polymer-metal composite and its actuation characteristics. Smart Mater Struct 16:583–588CrossRefMathSciNet
26.
Zurück zum Zitat Nguyen TT, Goob NS, Nguyen VK, Yoo Y, Park S (2008) Design, fabrication and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm. Sens Actuators A 141:640–648CrossRef Nguyen TT, Goob NS, Nguyen VK, Yoo Y, Park S (2008) Design, fabrication and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm. Sens Actuators A 141:640–648CrossRef
27.
Zurück zum Zitat MD.NASTRAN Quick Reference Guide (2006). MD.NASTRAN Quick Reference Guide (2006).
28.
Zurück zum Zitat Papila M, Sheplak M, Cattafesta LN (2008) Optimization of clamped circular piezoelectric composite actuators. Sens Actuators A 147:310–323CrossRef Papila M, Sheplak M, Cattafesta LN (2008) Optimization of clamped circular piezoelectric composite actuators. Sens Actuators A 147:310–323CrossRef
29.
Zurück zum Zitat Ji A, Park HC, Nguyen QV, Lee JW, Yoo YT (2009) Verification of beam models for ıonic polymer-metal composite actuator. Journal of Bionic Engineering 6:232–238CrossRef Ji A, Park HC, Nguyen QV, Lee JW, Yoo YT (2009) Verification of beam models for ıonic polymer-metal composite actuator. Journal of Bionic Engineering 6:232–238CrossRef
30.
Zurück zum Zitat Rossiter J, Stoimenov B, Mukai T (2007) A linear actuator from a single ionic polymer-metal composite (IPMC) strip In: Proceedings of SPIE electroactive polymer actuators and devices (EAPAD), San Diego, California, USA, no. 652421-8. Rossiter J, Stoimenov B, Mukai T (2007) A linear actuator from a single ionic polymer-metal composite (IPMC) strip In: Proceedings of SPIE electroactive polymer actuators and devices (EAPAD), San Diego, California, USA, no. 652421-8.
31.
Zurück zum Zitat Stoimenov B, Rossiter J, Mukai T (2007) Manufacturing of ionic polymer metal composites (IPMCs) that can actuate into complex curves In: Proceedings of SPIE electroactive polymer actuators and devices (EAPAD), San Diego, California, USA, no. 65240. Stoimenov B, Rossiter J, Mukai T (2007) Manufacturing of ionic polymer metal composites (IPMCs) that can actuate into complex curves In: Proceedings of SPIE electroactive polymer actuators and devices (EAPAD), San Diego, California, USA, no. 65240.
32.
Zurück zum Zitat Montgomery MA (1997) Response surface methodology, 2nd edn. Wiley, New York Montgomery MA (1997) Response surface methodology, 2nd edn. Wiley, New York
33.
Zurück zum Zitat Papila M, Haftka RT (2000) Response surface approximations: noise, error repair, and modelling errors. AIAA Journal 38:2336–2343CrossRef Papila M, Haftka RT (2000) Response surface approximations: noise, error repair, and modelling errors. AIAA Journal 38:2336–2343CrossRef
34.
Zurück zum Zitat Yördem OS, Papila M, Menceloğlu YZ (2008) Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater Des 26(1):33–44 Yördem OS, Papila M, Menceloğlu YZ (2008) Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater Des 26(1):33–44
35.
Zurück zum Zitat Kim KJ, Shahinpoor M (2003) Ionic polymer-metal composites: II. Manufacturing techniques. Smart Mater Struct 12:65–79CrossRef Kim KJ, Shahinpoor M (2003) Ionic polymer-metal composites: II. Manufacturing techniques. Smart Mater Struct 12:65–79CrossRef
36.
Zurück zum Zitat Tang H-P, Nie T, Tang Y-J, Yin C-F, Tang C-X, Wang Q-Y (2008) Constitutive relationship of ıonic polymer-metal composite and static response character of its cantilever setup to voltage. J Cent South Univ Technol 15:387–391CrossRef Tang H-P, Nie T, Tang Y-J, Yin C-F, Tang C-X, Wang Q-Y (2008) Constitutive relationship of ıonic polymer-metal composite and static response character of its cantilever setup to voltage. J Cent South Univ Technol 15:387–391CrossRef
37.
Zurück zum Zitat Newbury KM, Leo D J (2002) Electrically induced permanent strain in ionic polymer-metal composite actuators In: Proceedings of smart structures and materials Vol. 4695. Newbury KM, Leo D J (2002) Electrically induced permanent strain in ionic polymer-metal composite actuators In: Proceedings of smart structures and materials Vol. 4695.
38.
Zurück zum Zitat Bandopadhya D, Bhattacharya B, Dutta A (2008) Active vibration control strategy for a single-link flexible manipulator using ıonic polymer metal composite. J Intell Mater Syst Struc 19:487–496CrossRef Bandopadhya D, Bhattacharya B, Dutta A (2008) Active vibration control strategy for a single-link flexible manipulator using ıonic polymer metal composite. J Intell Mater Syst Struc 19:487–496CrossRef
39.
Zurück zum Zitat Bonomo C, Fortuna L, Giannone P, Graziani S (2005) Frequency response analysis of IPMC actuators by an IR system In: Proceedings of SPIE smart structures and materials Vol. 5759. Bonomo C, Fortuna L, Giannone P, Graziani S (2005) Frequency response analysis of IPMC actuators by an IR system In: Proceedings of SPIE smart structures and materials Vol. 5759.
Metadaten
Titel
“Equivalent” Electromechanical Coefficient for IPMC Actuator Design Based on Equivalent Bimorph Beam Theory
verfasst von
H. D. Çilingir
M. Papila
Publikationsdatum
01.10.2010
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 8/2010
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-009-9311-0

Weitere Artikel der Ausgabe 8/2010

Experimental Mechanics 8/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.