Skip to main content

2019 | OriginalPaper | Buchkapitel

Investigation of Changes in Causality Throughout Life—A Magnetoencephalogram Study Using Granger Causality and Transfer Entropy

verfasst von : Elizabeth Shumbayawonda, Alberto Fernández, Michael P. Hughes, Daniel Abásolo

Erschienen in: World Congress on Medical Physics and Biomedical Engineering 2018

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of magnetoencephalogram (MEG) signals in cognitive neuroscience research to investigate the functioning of the brain has increased over recent years. In this sensor space study, Granger Causality (GC) and Transfer entropy (TE) were applied to resting state MEGs from 220 healthy volunteers (aged 7–84) to characterise the possible changes in causality due to age and gender. Additionally, graph theory principles were used to evaluate different network components such as integration (global efficiency), segregation (clustering coefficient and modularity), centrality (betweenness), and resilience (strength and assortativity). Results showed that males had higher GC than females until mid-adulthood (~60 years). However, this gender difference was not observed using TE. Moreover, complex network analysis results of low global efficiency, high clustering coefficient, and low node strength, suggest that at rest, the brain topology resembled a network made up of loosely connected modules that had segregated and disassortative nodes with low resistance to change. Statistical analyses of results from both techniques, using pairwise t-test and two-way ANOVA, showed that age had a significant effect (p < 0.05) in all brain regions for both genders with significant gender differences being observed over the anterior, posterior, left lateral and right lateral regions of the brain. The results from this study could be used to develop a fingerprint of healthy ageing, which can potentially be used to assist with the identification of alterations to background brain activity due to pathology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sporns, O., Chialvo, D., Kaiser, M., Hilgetag, C., 2004. Organization, development and function of complex brain network. TRENDS in Cognitive Sciences, 8(9), pp. 418–425. Sporns, O., Chialvo, D., Kaiser, M., Hilgetag, C., 2004. Organization, development and function of complex brain network. TRENDS in Cognitive Sciences, 8(9), pp. 418–425.
2.
Zurück zum Zitat Dehemer, M., 2010. Structural Analysis of Complex Networks. Illustrated ed. Vienna: Springer Science & Business Media. Dehemer, M., 2010. Structural Analysis of Complex Networks. Illustrated ed. Vienna: Springer Science & Business Media.
3.
Zurück zum Zitat Niedermeyer, E., Lopes da Silva, F. H., 2005. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 5th ed. London: Lippincott Williams & Wilkins. Niedermeyer, E., Lopes da Silva, F. H., 2005. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 5th ed. London: Lippincott Williams & Wilkins.
4.
Zurück zum Zitat Shumbayawonda, E., Fernández, A., Hughes, M. P. & Abasolo, D., 2017. Permutation Entropy for the Characterisation of Brain Activity Recorded with Magnetoencephalograms in Healthy Ageing Entropy. Entropy, 19(141), pp. 1–17. Shumbayawonda, E., Fernández, A., Hughes, M. P. & Abasolo, D., 2017. Permutation Entropy for the Characterisation of Brain Activity Recorded with Magnetoencephalograms in Healthy Ageing Entropy. Entropy, 19(141), pp. 1–17.
5.
Zurück zum Zitat Lavanga, M., O. De Wel, A. Caicedo, K. Jansen, A. Dereymaeker, G. Naulaers and S. Van Huffel. Monitoring Effective Connectivity in the Preterm Brain: A Graph Approach to Study Maturation. Complexity, 2017(9078541), pp. 1–13. Lavanga, M., O. De Wel, A. Caicedo, K. Jansen, A. Dereymaeker, G. Naulaers and S. Van Huffel. Monitoring Effective Connectivity in the Preterm Brain: A Graph Approach to Study Maturation. Complexity, 2017(9078541), pp. 1–13.
6.
Zurück zum Zitat Wang, L., Zhang, J., Zhang, Y., Yan, R., Liu, H., Qiu, M., 2016. Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients. BioMed Research International, 2016(3870863), pp. 1–9. Wang, L., Zhang, J., Zhang, Y., Yan, R., Liu, H., Qiu, M., 2016. Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients. BioMed Research International, 2016(3870863), pp. 1–9.
7.
Zurück zum Zitat Niso, G., Bruña, R., Pereda, E., Gutiérrez, R., Bajo, R., Maestú, F., del-Pozo, F., 2013. HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity. Neuroinformatics, Volume 11, pp. 405–434. Niso, G., Bruña, R., Pereda, E., Gutiérrez, R., Bajo, R., Maestú, F., del-Pozo, F., 2013. HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity. Neuroinformatics, Volume 11, pp. 405–434.
8.
Zurück zum Zitat Rubinov, M. & Sporns, O., 2010. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, Volume 52, pp. 1059–69. Rubinov, M. & Sporns, O., 2010. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, Volume 52, pp. 1059–69.
9.
Zurück zum Zitat Granger, C., 1969. Investigating causal relations by econometric models and cross-spectral methods. Eonometrica: Journal of Econometric Socienty. 37(3) 3, pp. 424–438. Granger, C., 1969. Investigating causal relations by econometric models and cross-spectral methods. Eonometrica: Journal of Econometric Socienty. 37(3) 3, pp. 424–438.
10.
Zurück zum Zitat Vicente, R., Wibral, M., Lindner, M. & Pipa, G., 2011. Transfer entropy-a model-free measure of effective connectivity for the neurosciences. Journal of Computational Neuroscience, 30(1), pp. 45–67. Vicente, R., Wibral, M., Lindner, M. & Pipa, G., 2011. Transfer entropy-a model-free measure of effective connectivity for the neurosciences. Journal of Computational Neuroscience, 30(1), pp. 45–67.
11.
Zurück zum Zitat Rubinov, M., Sporns, O., Thivierge, J., Breakspear, M., 2011. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. Public library of Science Computational Biology, 7(6), pp. 1–14. Rubinov, M., Sporns, O., Thivierge, J., Breakspear, M., 2011. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. Public library of Science Computational Biology, 7(6), pp. 1–14.
12.
Zurück zum Zitat Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G.L., Hagmann, P., Corbetta, M., 2013. Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. The Journal of Neuroscience, 33(27), pp. 11239–11252. Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G.L., Hagmann, P., Corbetta, M., 2013. Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. The Journal of Neuroscience, 33(27), pp. 11239–11252.
13.
Zurück zum Zitat Stam, C. J., van Straaten, E.C., Van Dellen, E., Tewarie, P., Gong, G., Hillebrand, A., Meier, J., Van Mieghem, P.: 2016. The relation between structural and functional connectivity patterns in complex brain networks. International Journal of Psychophysiology, Volume 103, pp. 149–160. Stam, C. J., van Straaten, E.C., Van Dellen, E., Tewarie, P., Gong, G., Hillebrand, A., Meier, J., Van Mieghem, P.: 2016. The relation between structural and functional connectivity patterns in complex brain networks. International Journal of Psychophysiology, Volume 103, pp. 149–160.
14.
Zurück zum Zitat Peters, R., 2005. Ageing and the brain. Postgraduate Medical Journal, 82(964), pp. 84–88. Peters, R., 2005. Ageing and the brain. Postgraduate Medical Journal, 82(964), pp. 84–88.
15.
Zurück zum Zitat Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T.D., Elliot, M.A., Rupare, H.H., Gur, R E., Gur, R.C., Verma, R., 2013. Sex differences in the structural connectome of the human brain. PNAS, 111(2), pp. 823–828. Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T.D., Elliot, M.A., Rupare, H.H., Gur, R E., Gur, R.C., Verma, R., 2013. Sex differences in the structural connectome of the human brain. PNAS, 111(2), pp. 823–828.
Metadaten
Titel
Investigation of Changes in Causality Throughout Life—A Magnetoencephalogram Study Using Granger Causality and Transfer Entropy
verfasst von
Elizabeth Shumbayawonda
Alberto Fernández
Michael P. Hughes
Daniel Abásolo
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-9038-7_43

Neuer Inhalt