Skip to main content

2024 | OriginalPaper | Buchkapitel

Investigation of Device and Circuit-Level Performances of Dielectric Engineered Dopingless SOI Schottky Barrier MOSFET

verfasst von : Arnab Som, Sanjay Kumar Jana

Erschienen in: Micro and Nanoelectronics Devices, Circuits and Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we have represented a simulation study that includes the device and circuit-level performance improvements of SOI Schottky barrier (SB) MOSFETs. We have introduced the charge plasma concept instead of physical doping in our proposed SB-MOSFET. The gate work function (WF) engineering realizes the dopant segregation layers near the source and drains regions of the gate electrode. The WF near the source side charge plasma (CP) metal is optimized to improve the ION while the WF of the CP metal near the drain side is kept fixed. Dielectric engineering has been performed to minimize the leakage current. The gate dielectric (HfO2) with high-k permittivity is used on the source side to induce high gate dielectric capacitance density and that will create the electron accumulation near the source end at the channel. The length of the gate dielectric (SiO2) with low-k permittivity near the drain side is optimized to minimize the ambipolar current. The analog/RF performance parameters are investigated and compared to the conventional SOI SB-MOSFET. The simulation result indicates that there is a remarkable improvement in transconductance (58%) and cut-off frequency (87%) of the proposed dielectric engineered CP-based SOI SB-MOSFET (DE-CP-SOI-SB-MOSFET) than the SOI SB-MOSFET. Verilog-A model-based N-MOS inverters are simulated and analyzed to investigate the switching performance of two devices. It has been found that the average switching delay and the power delay product (PDP) have improved by 60 times and 36%, respectively, in the proposed DE-CP-SOI-SB-MOSFET-based inverter than the conventional SOI SB-MOSFET-based inverter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.S.W. Saitoh, A.I.A. Itoh, S.Y.S. Yamagami, M.A.M. Asada, Analysis of short-channel Schottky source/drain metal-oxide-semiconductor field-effect transistor on silicon-on-insulator substrate and demonstration of sub-50-nm n-type devices with metal gate. Jpn. J. Appl. Phys. 38(11R), 6226 (1999) W.S.W. Saitoh, A.I.A. Itoh, S.Y.S. Yamagami, M.A.M. Asada, Analysis of short-channel Schottky source/drain metal-oxide-semiconductor field-effect transistor on silicon-on-insulator substrate and demonstration of sub-50-nm n-type devices with metal gate. Jpn. J. Appl. Phys. 38(11R), 6226 (1999)
2.
Zurück zum Zitat J.M. Larson, J.P. Snyder, Overview and status of metal S/D Schottky-barrier MOSFET technology. IEEE Trans. Electron Devices 53(5), 1048–1058 (2006)CrossRef J.M. Larson, J.P. Snyder, Overview and status of metal S/D Schottky-barrier MOSFET technology. IEEE Trans. Electron Devices 53(5), 1048–1058 (2006)CrossRef
3.
Zurück zum Zitat S. Kale, P.N. Kondekar, Design and investigation of dielectric engineered dopant segregated Schottky barrier MOSFET with NiSi source/drain. IEEE Trans. Electron Devices 64(11), 4400–4407 (2017)CrossRef S. Kale, P.N. Kondekar, Design and investigation of dielectric engineered dopant segregated Schottky barrier MOSFET with NiSi source/drain. IEEE Trans. Electron Devices 64(11), 4400–4407 (2017)CrossRef
4.
Zurück zum Zitat S. Kale, P.N. Kondekar, Impact of underlap channel and body thickness on the performance of DG-MOSFET with Si3N4 spacer. in IEEE International Conference on Electron Devices and Solid-State Circuits, pp. 1–2 (2014) S. Kale, P.N. Kondekar, Impact of underlap channel and body thickness on the performance of DG-MOSFET with Si3N4 spacer. in IEEE International Conference on Electron Devices and Solid-State Circuits, pp. 1–2 (2014)
5.
Zurück zum Zitat H.C. Lin, M.F. Wang, C.Y. Lu, T.Y. Huang, Ambipolar Schottky barrier silicon-on-insulator metal–oxide–semiconductor transistors. Solid-State Electron. 47(2), 247–251 (2003)CrossRef H.C. Lin, M.F. Wang, C.Y. Lu, T.Y. Huang, Ambipolar Schottky barrier silicon-on-insulator metal–oxide–semiconductor transistors. Solid-State Electron. 47(2), 247–251 (2003)CrossRef
6.
Zurück zum Zitat S. Kale, P.N. Kondekar, Ambipolar leakage suppression in Ge n-channel Schottky barrier MOSFET. IETE J. Res. 61(4), 323–328 (2015)CrossRef S. Kale, P.N. Kondekar, Ambipolar leakage suppression in Ge n-channel Schottky barrier MOSFET. IETE J. Res. 61(4), 323–328 (2015)CrossRef
7.
Zurück zum Zitat S. Kale, P.N. Kondekar, Suppression of ambipolar leakage current in Schottky barrier MOSFET using gate engineering. Electron. Lett. 51(19), 1536–1538 (2015)CrossRef S. Kale, P.N. Kondekar, Suppression of ambipolar leakage current in Schottky barrier MOSFET using gate engineering. Electron. Lett. 51(19), 1536–1538 (2015)CrossRef
8.
Zurück zum Zitat H. Ghoneim, J. Knoch, H. Riel, D. Webb, M.T. Björk, S. Karg, W. Riess, Suppression of ambipolar behavior in metallic source/drain metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 95(21), 213504 (2009)CrossRef H. Ghoneim, J. Knoch, H. Riel, D. Webb, M.T. Björk, S. Karg, W. Riess, Suppression of ambipolar behavior in metallic source/drain metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 95(21), 213504 (2009)CrossRef
9.
Zurück zum Zitat H.C. Lin, K.L. Yeh, R.G. Huang, C.Y. Lin, T.Y. Huang, Schottky barrier thin-film transistor (SBTFT) with silicided source/drain and field-induced drain extension. IEEE Electron Device Lett. 22(4), 179–181 (2001)CrossRef H.C. Lin, K.L. Yeh, R.G. Huang, C.Y. Lin, T.Y. Huang, Schottky barrier thin-film transistor (SBTFT) with silicided source/drain and field-induced drain extension. IEEE Electron Device Lett. 22(4), 179–181 (2001)CrossRef
10.
Zurück zum Zitat H.C. Lin, K.L. Yeh, T.Y. Huang, R.G. Huang, S.M. Sze, Ambipolar Schottky-barrier TFTs. IEEE Trans. Electron Devices 49(2), 264–270 (2002)CrossRef H.C. Lin, K.L. Yeh, T.Y. Huang, R.G. Huang, S.M. Sze, Ambipolar Schottky-barrier TFTs. IEEE Trans. Electron Devices 49(2), 264–270 (2002)CrossRef
11.
Zurück zum Zitat Y. Zhang, J. Wan, K.L. Wang, B.Y. Nguyen, Design of 10-nm-scale recessed asymmetric Schottky barrier MOSFETs. IEEE Electron Device Lett. 23(7), 419–421 (2002)CrossRef Y. Zhang, J. Wan, K.L. Wang, B.Y. Nguyen, Design of 10-nm-scale recessed asymmetric Schottky barrier MOSFETs. IEEE Electron Device Lett. 23(7), 419–421 (2002)CrossRef
12.
Zurück zum Zitat S. Kale, Investigation of dual metal gate Schottky barrier MOSFET for suppression of ambipolar current. IETE J. Res. 1–6 (2020) S. Kale, Investigation of dual metal gate Schottky barrier MOSFET for suppression of ambipolar current. IETE J. Res. 1–6 (2020)
13.
Zurück zum Zitat S. Kale, P.N. Kondekar, Charge plasma based source/drain engineered Schottky Barrier MOSFET: Ambipolar suppression and improvement of the RF performance. Superlattices Microstruct. 113, 799–809 (2018)CrossRef S. Kale, P.N. Kondekar, Charge plasma based source/drain engineered Schottky Barrier MOSFET: Ambipolar suppression and improvement of the RF performance. Superlattices Microstruct. 113, 799–809 (2018)CrossRef
14.
Zurück zum Zitat P. Kumar, B. Bhowmick, Source-drain junction engineering Schottky barrier MOSFETs and their mixed mode application. SILICON 12(4), 821–830 (2020)CrossRef P. Kumar, B. Bhowmick, Source-drain junction engineering Schottky barrier MOSFETs and their mixed mode application. SILICON 12(4), 821–830 (2020)CrossRef
15.
Zurück zum Zitat G. Larrieu, E. Dubois, Schottky-barrier source/drain MOSFETs on ultrathin SOI body with a tungsten metallic midgap gate. IEEE Electron Device Lett. 25(12), 801–803 (2004)CrossRef G. Larrieu, E. Dubois, Schottky-barrier source/drain MOSFETs on ultrathin SOI body with a tungsten metallic midgap gate. IEEE Electron Device Lett. 25(12), 801–803 (2004)CrossRef
16.
Zurück zum Zitat R.A. Vega, T.J.K. Liu, Dopant-segregated Schottky junction tuning with fluorine pre-silicidation ion implant. IEEE Trans. Electron Devices 57(5), 1084–1092 (2010)CrossRef R.A. Vega, T.J.K. Liu, Dopant-segregated Schottky junction tuning with fluorine pre-silicidation ion implant. IEEE Trans. Electron Devices 57(5), 1084–1092 (2010)CrossRef
17.
Zurück zum Zitat G.C. Patil, S. Qureshi, A novel δ-doped partially insulated dopant-segregated Schottky barrier SOI MOSFET for analog/RF applications. Semicond. Sci. Technol. 26(8), 085002 (2011)CrossRef G.C. Patil, S. Qureshi, A novel δ-doped partially insulated dopant-segregated Schottky barrier SOI MOSFET for analog/RF applications. Semicond. Sci. Technol. 26(8), 085002 (2011)CrossRef
18.
Zurück zum Zitat G. Larrieu, E. Dubois, CMOS inverter based on Schottky source–drain MOS technology with low-temperature dopant segregation. IEEE Electron Device Lett. 32(6), 728–730 (2011)CrossRef G. Larrieu, E. Dubois, CMOS inverter based on Schottky source–drain MOS technology with low-temperature dopant segregation. IEEE Electron Device Lett. 32(6), 728–730 (2011)CrossRef
19.
Zurück zum Zitat F. Bashir, S.A. Loan, M. Rafat, A.R.M. Alamoud, S.A. Abbasi, A high-performance source engineered charge plasma-based Schottky MOSFET on SOI. IEEE Trans. Electron Devices 62(10), 3357–3364 (2015)CrossRef F. Bashir, S.A. Loan, M. Rafat, A.R.M. Alamoud, S.A. Abbasi, A high-performance source engineered charge plasma-based Schottky MOSFET on SOI. IEEE Trans. Electron Devices 62(10), 3357–3364 (2015)CrossRef
20.
Zurück zum Zitat F. Bashir, A.G. Alharbi, S.A. Loan, Electrostatically doped DSL Schottky barrier MOSFET on SOI for low power applications. IEEE J. Electron Devices Soc. 6, 19–25 (2017)CrossRef F. Bashir, A.G. Alharbi, S.A. Loan, Electrostatically doped DSL Schottky barrier MOSFET on SOI for low power applications. IEEE J. Electron Devices Soc. 6, 19–25 (2017)CrossRef
21.
Zurück zum Zitat S. Rashid, F. Bashir, F.A. Khanday, M.R. Beigh, F.A. Hussin, 2-D design of double gate Schottky tunnel MOSFET for high-performance use in Analog/RF applications. IEEE Access 9, 80158–80169 (2021)CrossRef S. Rashid, F. Bashir, F.A. Khanday, M.R. Beigh, F.A. Hussin, 2-D design of double gate Schottky tunnel MOSFET for high-performance use in Analog/RF applications. IEEE Access 9, 80158–80169 (2021)CrossRef
22.
Zurück zum Zitat S. Singh, A.P. Singh, P.N. Kondekar, A novel self-aligned charge plasma Schottky barrier tunnel FET using work function engineering. Microelectron. Eng. 168, 67–75 (2017)CrossRef S. Singh, A.P. Singh, P.N. Kondekar, A novel self-aligned charge plasma Schottky barrier tunnel FET using work function engineering. Microelectron. Eng. 168, 67–75 (2017)CrossRef
23.
Zurück zum Zitat ATLAS Device Simulation Software, Silvaco Int, Santa Clara (2016) ATLAS Device Simulation Software, Silvaco Int, Santa Clara (2016)
24.
Zurück zum Zitat R. Jhaveri, V. Nagavarapu, J.C. Woo, Asymmetric Schottky tunneling source SOI MOSFET design for mixed-mode applications. IEEE Trans. Electron Devices 56(1), 93–99 (2008)CrossRef R. Jhaveri, V. Nagavarapu, J.C. Woo, Asymmetric Schottky tunneling source SOI MOSFET design for mixed-mode applications. IEEE Trans. Electron Devices 56(1), 93–99 (2008)CrossRef
25.
Zurück zum Zitat M. Bashir, M. Raushan, S. Ahmad, M.J. Siddiqui, Investigation of gate material engineering in junctionless transistor for digital and analog applications. Silicon 1–12 (2021) M. Bashir, M. Raushan, S. Ahmad, M.J. Siddiqui, Investigation of gate material engineering in junctionless transistor for digital and analog applications. Silicon 1–12 (2021)
Metadaten
Titel
Investigation of Device and Circuit-Level Performances of Dielectric Engineered Dopingless SOI Schottky Barrier MOSFET
verfasst von
Arnab Som
Sanjay Kumar Jana
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4495-8_4

Neuer Inhalt