Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 3-4/2021

26.01.2021 | Application

Investigation of electrochemical reduction effects on graphene oxide powders for high-performance supercapacitors

verfasst von: Yi-Fang Hung, Chia Cheng, Chun-Kai Huang, Chii-Rong Yang, Shih-Feng Tseng

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 3-4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study aims to investigate the electrochemical reduction effects on graphene oxide (GO) powders with various bias voltages and treatment times. Phosphate-buffered saline solution was used as the electrolyte in the electrochemical reduction process. The experimental results showed that the GO powders were reduced to produce the best reduced GO (rGO) powders as using a bias of −17.5 V for 2 h. After the analysis of Raman spectra for GO and rGO powders, the intensity ratios of the D and G bands increased from 0.85 to 1.08, respectively. The carbon to oxygen ratios increased from 0.4 to 1.79 measured by an X-ray photoelectron spectroscopy. Moreover, the electrical conductivity obviously increased from 7.92 × 10−4 to 4.16 × 10−1 S/cm. Fourier transform infrared spectra revealed the disappearance of oxygen-containing functional groups in rGO powders. According to the cyclic voltammetry analysis, the specific capacitance of the rGO powders could reach 183 F/g at the scan rate of 100 mV/S in 1 M KCl electrolyte solution. This specific capacitance value was 16 times higher than that obtained with the GO powders. The results indicated that the produced high-quality rGO powders could be used for high-performance supercapacitors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapitor devices based on graphene materials. J Phys Chem C 113:13103–13107CrossRef Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapitor devices based on graphene materials. J Phys Chem C 113:13103–13107CrossRef
2.
Zurück zum Zitat Iqbal MF, Ashiq MN, Hassan M-U, Nawaz R, Masood A, Razaq A (2018) Excellent electrochemical behavior of graphene oxide based aluminum sulfide nanowalls for supercapacitor applications. Energy 159:151–159CrossRef Iqbal MF, Ashiq MN, Hassan M-U, Nawaz R, Masood A, Razaq A (2018) Excellent electrochemical behavior of graphene oxide based aluminum sulfide nanowalls for supercapacitor applications. Energy 159:151–159CrossRef
3.
Zurück zum Zitat Yanik MO, Yigit EA, Akansu YE, Sahmetlioglu E (2017) Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage. Energy 138:883–889CrossRef Yanik MO, Yigit EA, Akansu YE, Sahmetlioglu E (2017) Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage. Energy 138:883–889CrossRef
4.
Zurück zum Zitat Khalaj M, Sedghi A, Miankushki HN, Golkhatmi SZ (2019) Synthesis of novel graphene/Co3O4/polypyrrole ternary nanocomposites as electrochemically enhanced supercapacitor electrodes. Energy 188:116088CrossRef Khalaj M, Sedghi A, Miankushki HN, Golkhatmi SZ (2019) Synthesis of novel graphene/Co3O4/polypyrrole ternary nanocomposites as electrochemically enhanced supercapacitor electrodes. Energy 188:116088CrossRef
5.
Zurück zum Zitat Kumar R, Joanni E, Savu R, Pereira MS, Singh RK, Constantino CJL, Kubota LT, Matsuda A, Moshkalev SA (2019) Fabrication and electrochemical evaluation of micro supercapacitors prepared by direct laser writing on free-standing graphite oxide paper. Energy 179:676–684CrossRef Kumar R, Joanni E, Savu R, Pereira MS, Singh RK, Constantino CJL, Kubota LT, Matsuda A, Moshkalev SA (2019) Fabrication and electrochemical evaluation of micro supercapacitors prepared by direct laser writing on free-standing graphite oxide paper. Energy 179:676–684CrossRef
6.
Zurück zum Zitat Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D (2010) Graphene-on-silicon schottky junction solar cells. Adv Mater 22:2743–2748CrossRef Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D (2010) Graphene-on-silicon schottky junction solar cells. Adv Mater 22:2743–2748CrossRef
7.
Zurück zum Zitat Yue G, Wu J, Xiao Y, Lin J, Huang M, Lan Z, Fan L (2013) Functionalized graphene/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells. Energy 54:315–321CrossRef Yue G, Wu J, Xiao Y, Lin J, Huang M, Lan Z, Fan L (2013) Functionalized graphene/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells. Energy 54:315–321CrossRef
8.
Zurück zum Zitat Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef
9.
Zurück zum Zitat Luo D, Zhang G, Liu J, Sun X (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115:11327–11335CrossRef Luo D, Zhang G, Liu J, Sun X (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115:11327–11335CrossRef
10.
Zurück zum Zitat Kang S, Zhuang J, Kang S, Peng Y, Guan S (2019) Synthesis of high-quality graphene with enhanced electrochemical properties by two-step reduction method. Ceram Int 45(18):23954–23965CrossRef Kang S, Zhuang J, Kang S, Peng Y, Guan S (2019) Synthesis of high-quality graphene with enhanced electrochemical properties by two-step reduction method. Ceram Int 45(18):23954–23965CrossRef
11.
Zurück zum Zitat Ismail Z (2019) Green reduction of graphene oxide by plant extracts: A short review. Ceram Int 45(18):23857–23868CrossRef Ismail Z (2019) Green reduction of graphene oxide by plant extracts: A short review. Ceram Int 45(18):23857–23868CrossRef
12.
Zurück zum Zitat Ma Q, Song J, Jin C, Li Z, Liu J, Meng S, Zhao J, Guo Y (2013) A rapid and easy approach for the reduction of graphene oxide by formamidinesulfinic acid. Carbon 54:36–41CrossRef Ma Q, Song J, Jin C, Li Z, Liu J, Meng S, Zhao J, Guo Y (2013) A rapid and easy approach for the reduction of graphene oxide by formamidinesulfinic acid. Carbon 54:36–41CrossRef
13.
Zurück zum Zitat Song NJ, Chen CM, Lu C, Liu Z, Kong QQ, Cai R (2014) Thermally reduced graphene oxide films as flexible lateral heat spreaders. J Mater Chem A 2:16563–16568CrossRef Song NJ, Chen CM, Lu C, Liu Z, Kong QQ, Cai R (2014) Thermally reduced graphene oxide films as flexible lateral heat spreaders. J Mater Chem A 2:16563–16568CrossRef
14.
Zurück zum Zitat Zhang P, Shen Y, Wu W, Li J, Zhou Z (2018) Enhanced photocatalytic performance of KNbO3(100)/reduced graphene oxide nanocomposites investigated using first-principles calculations: RGO reductivity effect. Appl Surf Sci 434:932–939CrossRef Zhang P, Shen Y, Wu W, Li J, Zhou Z (2018) Enhanced photocatalytic performance of KNbO3(100)/reduced graphene oxide nanocomposites investigated using first-principles calculations: RGO reductivity effect. Appl Surf Sci 434:932–939CrossRef
15.
Zurück zum Zitat Low CTJ, Walsh FC, Chakrabarti MH, Hashim MA, Hussain MA (2013) Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54:1–21CrossRef Low CTJ, Walsh FC, Chakrabarti MH, Hashim MA, Hussain MA (2013) Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54:1–21CrossRef
16.
Zurück zum Zitat Inamdar AI, Jo Y, Kim J, Han J, Pawar SM, Kalubarme RS, Park CJ, Hong JP, Park YS, Jung W, Kim H, Im H (2015) Synthesis and enhanced electrochemical supercapacitive properties of manganese oxide nanoflake electrodes. Energy 83:532–538CrossRef Inamdar AI, Jo Y, Kim J, Han J, Pawar SM, Kalubarme RS, Park CJ, Hong JP, Park YS, Jung W, Kim H, Im H (2015) Synthesis and enhanced electrochemical supercapacitive properties of manganese oxide nanoflake electrodes. Energy 83:532–538CrossRef
17.
Zurück zum Zitat Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S (2010) Green electrochemical synthesis of Pt/ graphene sheet nanocomposite film and its electrocatalytic property. J Power Sources 195:4628–4633CrossRef Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S (2010) Green electrochemical synthesis of Pt/ graphene sheet nanocomposite film and its electrocatalytic property. J Power Sources 195:4628–4633CrossRef
18.
Zurück zum Zitat Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S (2009) Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J 15:6116–6120CrossRef Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S (2009) Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J 15:6116–6120CrossRef
19.
Zurück zum Zitat Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659CrossRef Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659CrossRef
20.
Zurück zum Zitat Ramachandran R, Felix S, Joshi GM, Raghupathy BPC, Jeong SK, Grace AN (2013) Synthesis of graphene platelets by chemical and electrochemical route. Mater Res Bull 48:3834–3842CrossRef Ramachandran R, Felix S, Joshi GM, Raghupathy BPC, Jeong SK, Grace AN (2013) Synthesis of graphene platelets by chemical and electrochemical route. Mater Res Bull 48:3834–3842CrossRef
21.
Zurück zum Zitat Wang M, Duong LD, Oh JS, Mai NT, Kim S, Hong S, Hwang T, Lee Y, Nam JD (2014) Large-area conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD). ACS Appl Mater Interfaces 6:1747–1753CrossRef Wang M, Duong LD, Oh JS, Mai NT, Kim S, Hong S, Hwang T, Lee Y, Nam JD (2014) Large-area conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD). ACS Appl Mater Interfaces 6:1747–1753CrossRef
22.
Zurück zum Zitat Lin DC, Liu YY, Lee HW, Sun J, Wang HT, Yan K, Xie J, Cui Y (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host or lithium metal anodes. Nat Nanotechnol 11:626–632CrossRef Lin DC, Liu YY, Lee HW, Sun J, Wang HT, Yan K, Xie J, Cui Y (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host or lithium metal anodes. Nat Nanotechnol 11:626–632CrossRef
23.
Zurück zum Zitat XSabina D, Roksana M, Agnieszka S, Tadeusz P, Michalina KM, Maciej S (2016) Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16:103–118CrossRef XSabina D, Roksana M, Agnieszka S, Tadeusz P, Michalina KM, Maciej S (2016) Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16:103–118CrossRef
24.
Zurück zum Zitat Beatiriz MG, Yu B, Mirko P, Davide S, Roman K, Gerasimos K, Iwan M (2018) Reduction of moisture sensitivity of PbS quantum dot solar cells by incorporation of reduced graphene oxide. Sol Energy Mater Sol Cells 183:1–7CrossRef Beatiriz MG, Yu B, Mirko P, Davide S, Roman K, Gerasimos K, Iwan M (2018) Reduction of moisture sensitivity of PbS quantum dot solar cells by incorporation of reduced graphene oxide. Sol Energy Mater Sol Cells 183:1–7CrossRef
25.
Zurück zum Zitat Mani V, Devadas B, Chen SM (2013) Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 41:309–315CrossRef Mani V, Devadas B, Chen SM (2013) Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 41:309–315CrossRef
26.
Zurück zum Zitat Jeon JW, Kwon SR, Lutkenhaus JL (2015) Polyaniline nanofiber/ electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J Mater Chem A 3:3757–3767CrossRef Jeon JW, Kwon SR, Lutkenhaus JL (2015) Polyaniline nanofiber/ electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J Mater Chem A 3:3757–3767CrossRef
27.
Zurück zum Zitat Liu X, Qi X, Zhang Z, Ren L, Hao G, Liu Y, Wang Y, Huang K, Wei X, Huang Z, Zhong J (2014) Electrochemically reduced graphene oxide with porous structure as binder-free electrode for high-rate supercapacitors. RSC Adv 4:13673–13679CrossRef Liu X, Qi X, Zhang Z, Ren L, Hao G, Liu Y, Wang Y, Huang K, Wei X, Huang Z, Zhong J (2014) Electrochemically reduced graphene oxide with porous structure as binder-free electrode for high-rate supercapacitors. RSC Adv 4:13673–13679CrossRef
28.
Zurück zum Zitat Aized T, Khan MB, Raza H, Ilyas M (2017) Production routes, electromechanical properties and potential application of layered nanomaterials and 2D nanopolymeric composites–a review. Int J Adv Manuf Technol 93:3449–3459CrossRef Aized T, Khan MB, Raza H, Ilyas M (2017) Production routes, electromechanical properties and potential application of layered nanomaterials and 2D nanopolymeric composites–a review. Int J Adv Manuf Technol 93:3449–3459CrossRef
29.
Zurück zum Zitat Li M, Liu J, Zhang X, Tian Y, Jiang K (2018) Fabrication of graphene/ nickel composite microcomponents using electroforming. Int J Adv Manuf Technol 96:3191–3196CrossRef Li M, Liu J, Zhang X, Tian Y, Jiang K (2018) Fabrication of graphene/ nickel composite microcomponents using electroforming. Int J Adv Manuf Technol 96:3191–3196CrossRef
30.
Zurück zum Zitat Hanif M, Wasim A, Shah AH, Noor S, Sajid M, Mujtaba N (2019) Optimization of process parameters using grpahene-based dielectric in electric discharge machining of AISI D2 steel. Int J Adv Manuf Technol 103:3735–3749CrossRef Hanif M, Wasim A, Shah AH, Noor S, Sajid M, Mujtaba N (2019) Optimization of process parameters using grpahene-based dielectric in electric discharge machining of AISI D2 steel. Int J Adv Manuf Technol 103:3735–3749CrossRef
31.
Zurück zum Zitat Wang X, Yi S, Guo H, Li CJ, Ding SL (2020) Erosion characteristics of electrical discharge machining using graphene powder in deionized water as dielectric. Int J Adv Manuf Technol 108:357–368CrossRef Wang X, Yi S, Guo H, Li CJ, Ding SL (2020) Erosion characteristics of electrical discharge machining using graphene powder in deionized water as dielectric. Int J Adv Manuf Technol 108:357–368CrossRef
32.
Zurück zum Zitat Purkait T, Singh G, Kuamr D, Singh M, Dey RS (2018) High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci Rep 8:640–652CrossRef Purkait T, Singh G, Kuamr D, Singh M, Dey RS (2018) High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci Rep 8:640–652CrossRef
33.
Zurück zum Zitat Hqaque AMJ, Park H, Sung D, Jon S, Choi SY, Kim K (2012) An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection. Anal Chem 84:1871–1878CrossRef Hqaque AMJ, Park H, Sung D, Jon S, Choi SY, Kim K (2012) An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection. Anal Chem 84:1871–1878CrossRef
34.
Zurück zum Zitat Khan MMI, Haque AMJ, Kim K (2013) Electrochemical determination of uric acid in the presence of ascorbic acid on electrochemically reduced graphene oxide modified electrode. J Electroanal Chem 700:54–59CrossRef Khan MMI, Haque AMJ, Kim K (2013) Electrochemical determination of uric acid in the presence of ascorbic acid on electrochemically reduced graphene oxide modified electrode. J Electroanal Chem 700:54–59CrossRef
35.
Zurück zum Zitat Ghanashyam G, Jeong HK (2018) Thermally reduced graphite oxide-titanium dioxide composites for supercapacitors. Chem Phys Lett 706:421–425CrossRef Ghanashyam G, Jeong HK (2018) Thermally reduced graphite oxide-titanium dioxide composites for supercapacitors. Chem Phys Lett 706:421–425CrossRef
36.
Zurück zum Zitat Ramadoss A, Saravanakumar B, Kim SJ (2015) Thermally reduced graphene oxide-coated fabrics for flexible supercapacitors and self-powered systems. Nano Energy 15:587–597CrossRef Ramadoss A, Saravanakumar B, Kim SJ (2015) Thermally reduced graphene oxide-coated fabrics for flexible supercapacitors and self-powered systems. Nano Energy 15:587–597CrossRef
37.
Zurück zum Zitat Zhao B, Liu P, Jiang Y, Pan D, Tao H, Song J, Fang T, Xu W (2012) Supercapacitor performances of thermally reduced graphene oxide. J Power Sources 198:423–427CrossRef Zhao B, Liu P, Jiang Y, Pan D, Tao H, Song J, Fang T, Xu W (2012) Supercapacitor performances of thermally reduced graphene oxide. J Power Sources 198:423–427CrossRef
38.
Zurück zum Zitat Zhang K, Mao L, Zhang LL, Chan HSO, Zhao XS, Wu J (2011) Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. J Mater Chem 21:7302–7307CrossRef Zhang K, Mao L, Zhang LL, Chan HSO, Zhao XS, Wu J (2011) Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. J Mater Chem 21:7302–7307CrossRef
39.
Zurück zum Zitat Fang Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T (2012) Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50:1699–1712CrossRef Fang Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T (2012) Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50:1699–1712CrossRef
40.
Zurück zum Zitat Peng XY, Liu XX, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496CrossRef Peng XY, Liu XX, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496CrossRef
41.
Zurück zum Zitat Yang J, Gunasekaran S (2013) Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon 51:36–44CrossRef Yang J, Gunasekaran S (2013) Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon 51:36–44CrossRef
42.
Zurück zum Zitat Yang Q, Pang SK, Yung KC (2016) Electrochemically reduced graphene oxide/carbon nanotubes composites as binder-free supercapacitor electrodes. J Power Sources 311:144–152CrossRef Yang Q, Pang SK, Yung KC (2016) Electrochemically reduced graphene oxide/carbon nanotubes composites as binder-free supercapacitor electrodes. J Power Sources 311:144–152CrossRef
43.
Zurück zum Zitat Hung YF, Cheng C, Huang CK, Yang CR (2018) A facile method for batch preparation of electrochemically reduced graphene oxide. Nanomaterials 9:376–391CrossRef Hung YF, Cheng C, Huang CK, Yang CR (2018) A facile method for batch preparation of electrochemically reduced graphene oxide. Nanomaterials 9:376–391CrossRef
44.
Zurück zum Zitat Bruzzone AAA, Costa HL, Lonardo PM, Lucca DA (2008) Advances in engineered surfaces for functional performance. CIRP Ann Manuf Technol 57:750–769CrossRef Bruzzone AAA, Costa HL, Lonardo PM, Lucca DA (2008) Advances in engineered surfaces for functional performance. CIRP Ann Manuf Technol 57:750–769CrossRef
45.
Zurück zum Zitat Ribeiro FSF, Lopes JC, Bianchi EC, Sanchez LE (2020) Applications of texturization techniques on cutting tools —a survey. Int J Adv Manuf Technol 109:1117–1135CrossRef Ribeiro FSF, Lopes JC, Bianchi EC, Sanchez LE (2020) Applications of texturization techniques on cutting tools —a survey. Int J Adv Manuf Technol 109:1117–1135CrossRef
46.
Zurück zum Zitat Koshy P, Tovey J (2011) Performance of electrical discharge textured cutting tools. CIRP Ann Manuf Technol 60:153–156CrossRef Koshy P, Tovey J (2011) Performance of electrical discharge textured cutting tools. CIRP Ann Manuf Technol 60:153–156CrossRef
47.
Zurück zum Zitat Escudero ML, Llorente I, Pérez-Maceda BT, José-Pinilla SS, Sánchez-López L, Lozano RM, Aguado-Henche S, Clemente de Arriba C, Alobera-Gracia MA, García-Alonso MC (2020) Electrochemically reduced graphene oxide on CoCr biomedical alloy: Characterization, macrophage biocompatibility and hemocompatibility in rats with graphene and graphene oxide. Mater Sci Eng C 109:110522CrossRef Escudero ML, Llorente I, Pérez-Maceda BT, José-Pinilla SS, Sánchez-López L, Lozano RM, Aguado-Henche S, Clemente de Arriba C, Alobera-Gracia MA, García-Alonso MC (2020) Electrochemically reduced graphene oxide on CoCr biomedical alloy: Characterization, macrophage biocompatibility and hemocompatibility in rats with graphene and graphene oxide. Mater Sci Eng C 109:110522CrossRef
48.
Zurück zum Zitat Hong BJ, Compton OC, An Z, Eryazici I, Nguyen ST (2012) Successful stabilization of graphene oxide in electrolyte solutions: enhancement of biofunctionalization and cellular uptake. ACS Nano 6:63–73CrossRef Hong BJ, Compton OC, An Z, Eryazici I, Nguyen ST (2012) Successful stabilization of graphene oxide in electrolyte solutions: enhancement of biofunctionalization and cellular uptake. ACS Nano 6:63–73CrossRef
49.
Zurück zum Zitat Rahman JU, Du NV, Nam WH, Shin WH, Lee KH, Seo W-S, Kim MH, Lee S (2019) Grain boundary interfaces controlled by reduced graphene oxide in nonstoichiometric SrTiO3-δ thermoelectrics. Sci Rep 9:8624CrossRef Rahman JU, Du NV, Nam WH, Shin WH, Lee KH, Seo W-S, Kim MH, Lee S (2019) Grain boundary interfaces controlled by reduced graphene oxide in nonstoichiometric SrTiO3-δ thermoelectrics. Sci Rep 9:8624CrossRef
50.
Zurück zum Zitat Yang S, Yue W, Huang D, Chen C, Lin H, Yang X (2012) A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv 2:8827–8832CrossRef Yang S, Yue W, Huang D, Chen C, Lin H, Yang X (2012) A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv 2:8827–8832CrossRef
51.
Zurück zum Zitat Wang Y, Shi Z, Yin J (2011) Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces 3:1127–1133CrossRef Wang Y, Shi Z, Yin J (2011) Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces 3:1127–1133CrossRef
52.
Zurück zum Zitat Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50:5331–5339CrossRef Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50:5331–5339CrossRef
53.
Zurück zum Zitat Ding JN, Liu YB, Yuan NY, Ding GQ, Fan Y, Yu CT (2012) The influence of temperature, time and concentration on the dispersion of reduced graphene oxide prepared by hydrothermal reduction. Diam Relat Mater 21:11–15CrossRef Ding JN, Liu YB, Yuan NY, Ding GQ, Fan Y, Yu CT (2012) The influence of temperature, time and concentration on the dispersion of reduced graphene oxide prepared by hydrothermal reduction. Diam Relat Mater 21:11–15CrossRef
54.
Zurück zum Zitat Park S, An JH, Jung IW, Piner RD, An SJ, Li XS, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRef Park S, An JH, Jung IW, Piner RD, An SJ, Li XS, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRef
55.
Zurück zum Zitat Allahbakhsh A, Sharif F, Mazinani S, Kalaee MR (2014) Synthesis and characterization of graphene oxide in suspension and powder forms by chemical exfoliation method. Int J Nano Nano Dimens 5:11–20 Allahbakhsh A, Sharif F, Mazinani S, Kalaee MR (2014) Synthesis and characterization of graphene oxide in suspension and powder forms by chemical exfoliation method. Int J Nano Nano Dimens 5:11–20
56.
Zurück zum Zitat Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20:8467–8469CrossRef Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20:8467–8469CrossRef
57.
Zurück zum Zitat You JM, Kim D, Kim SK, Kim MS, Han HS, Jeon S (2013) Novel determination of hydrogen peroxide by electrochemically reduced graphene oxide grafted with aminothiophenol-Pd nanoparticles. Sens. Actuators B Chem 178:450–457CrossRef You JM, Kim D, Kim SK, Kim MS, Han HS, Jeon S (2013) Novel determination of hydrogen peroxide by electrochemically reduced graphene oxide grafted with aminothiophenol-Pd nanoparticles. Sens. Actuators B Chem 178:450–457CrossRef
58.
Zurück zum Zitat Li M, Liu Z, Ruan J, Chen X, Xu F, Chen X, Lu X, Yang S (2014) Noncovalently grafting sulfonic acid onto graphene oxide for improved hole transport in polymer solar cells. RSC Adv 4:53999–54006CrossRef Li M, Liu Z, Ruan J, Chen X, Xu F, Chen X, Lu X, Yang S (2014) Noncovalently grafting sulfonic acid onto graphene oxide for improved hole transport in polymer solar cells. RSC Adv 4:53999–54006CrossRef
59.
Zurück zum Zitat Zhang Y, Yuan S, Zhou W, Xu J, Li Y (2007) Spectroscopic evidence and molecular simulation investigation of the pi-pi interaction between pyrene molecules and carbon nanotubes. J Nanosci Nanotechnol 7:2366–2375CrossRef Zhang Y, Yuan S, Zhou W, Xu J, Li Y (2007) Spectroscopic evidence and molecular simulation investigation of the pi-pi interaction between pyrene molecules and carbon nanotubes. J Nanosci Nanotechnol 7:2366–2375CrossRef
60.
Zurück zum Zitat Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114CrossRef Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114CrossRef
61.
Zurück zum Zitat Bartlam C, Morsch S, Heard KWJ, Quayle P, Yeates SG, Vijayaraghvan A (2018) Nanoscale infrared identification and mapping of chemical functional groups on graphene. Carbon 139:317–324CrossRef Bartlam C, Morsch S, Heard KWJ, Quayle P, Yeates SG, Vijayaraghvan A (2018) Nanoscale infrared identification and mapping of chemical functional groups on graphene. Carbon 139:317–324CrossRef
62.
Zurück zum Zitat Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312CrossRef Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312CrossRef
63.
Zurück zum Zitat Kumar A, Khandelwal M (2014) Amino acid mediated functionalization and reduction of graphene oxide—synthesis and the formation mechanism of nitrogen-doped graphene. N J Chem 38:3457–3467CrossRef Kumar A, Khandelwal M (2014) Amino acid mediated functionalization and reduction of graphene oxide—synthesis and the formation mechanism of nitrogen-doped graphene. N J Chem 38:3457–3467CrossRef
64.
Zurück zum Zitat Anwar AW, Majeed A, Iqbal N, Ullah W, Shuaib A, Ilyas U, Bibi F, Rafique HM (2015) Specific capacitance and cyclic stability of graphene based metal/metal oxide nanocomposites: a review. J Mater Sci Technol 31:699–707CrossRef Anwar AW, Majeed A, Iqbal N, Ullah W, Shuaib A, Ilyas U, Bibi F, Rafique HM (2015) Specific capacitance and cyclic stability of graphene based metal/metal oxide nanocomposites: a review. J Mater Sci Technol 31:699–707CrossRef
65.
Zurück zum Zitat Harima Y, Setodoi S, Imae I, Komaguchi K, Ooyama Y, Ohshita J, Mizota H, Yano J (2011) Electrochemical reduction of graphene oxide in organic solvents. Electrochim Acta 56:5363–5368CrossRef Harima Y, Setodoi S, Imae I, Komaguchi K, Ooyama Y, Ohshita J, Mizota H, Yano J (2011) Electrochemical reduction of graphene oxide in organic solvents. Electrochim Acta 56:5363–5368CrossRef
66.
Zurück zum Zitat Ke Q, Liu Y, Liu H, Zhang Y, Hu Y, Wang J (2014) Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors. RSC Adv 4:26398–26406CrossRef Ke Q, Liu Y, Liu H, Zhang Y, Hu Y, Wang J (2014) Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors. RSC Adv 4:26398–26406CrossRef
Metadaten
Titel
Investigation of electrochemical reduction effects on graphene oxide powders for high-performance supercapacitors
verfasst von
Yi-Fang Hung
Chia Cheng
Chun-Kai Huang
Chii-Rong Yang
Shih-Feng Tseng
Publikationsdatum
26.01.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 3-4/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-06578-y

Weitere Artikel der Ausgabe 3-4/2021

The International Journal of Advanced Manufacturing Technology 3-4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.