Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 7/2020

13.03.2020 | Research Article-Mechanical Engineering

Investigation of Physico-mechanical Behavior, Permeability and Wall Shear Stress of Porous HA/PMMA Composite Bone Scaffold

verfasst von: Babar Pasha Mahammod, Emon Barua, Payel Deb, Ashish B. Deoghare, Krishna Murari Pandey

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydroxyapatite (HA)-based composite bone scaffolds are developed using solvent casting particulate leaching technique by varying the weight percentages of HA from 50 to 70% (w/w) in polymethyl methacrylate matrix. The chemical properties of the developed scaffolds are investigated by XRD analysis which shows the presence of crystalline HA and traces of β-TCP in the scaffolds. The microstructure of the scaffolds is studied by the SEM micrographs, which show porous morphology with an average pore size of 119 ± 18–148 ± 23 µm and a maximum pore size of 148 ± 23 µm for HA 50 scaffold. The highest porosity of 75 ± 2.0% is recorded for HA 50 scaffold by conducting liquid displacement test and a maximum compressive strength of 6.26 ± 0.53 MPa is recorded for HA 60 scaffold by performing uniaxial compression test of the scaffolds. The permeability and wall shear stress (WSS) of the scaffolds are investigated by computational fluid dynamics (CFD). The CFD analysis is performed in a fluid domain developed by Boolean operations on the CAD model of the scaffold developed using micro-computed tomography-based 3D image acquisition technique by Mimics V1. Results show that the permeability increases and WSS decreases with an increase in the porosity of the scaffolds. However, both permeability and WSS obtained for the developed scaffolds are within the limit prescribed for the growth of bone tissues. It is concluded that scaffolds with 60 wt% of HA exhibit the best combination of porosity, permeability and compressive strength making it suitable for bone tissue engineering applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pilia, M.; Guda, T.; Appleford, M.: Development of composite scaffolds for load-bearing segmental bone defects. Biomed. Res. Int. 2013, 1–15 (2013) Pilia, M.; Guda, T.; Appleford, M.: Development of composite scaffolds for load-bearing segmental bone defects. Biomed. Res. Int. 2013, 1–15 (2013)
2.
Zurück zum Zitat Wu, S.; Liu, X.; Yeung, K.W.K.; Liu, C.; Yang, X.: Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R Rep. 80, 1–36 (2014) Wu, S.; Liu, X.; Yeung, K.W.K.; Liu, C.; Yang, X.: Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R Rep. 80, 1–36 (2014)
3.
Zurück zum Zitat Barua, E.; Deoghare, A.B.; Chatterjee, S.; Mate, V.R.: Characterization of mechanical and micro-architectural properties of porous hydroxyapatite bone scaffold using green microalgae as binder. Arab. J. Sci. Eng. 44, 7707–7722 (2019) Barua, E.; Deoghare, A.B.; Chatterjee, S.; Mate, V.R.: Characterization of mechanical and micro-architectural properties of porous hydroxyapatite bone scaffold using green microalgae as binder. Arab. J. Sci. Eng. 44, 7707–7722 (2019)
4.
Zurück zum Zitat Tang, D.; Tare, R.S.; Yang, L.Y.; Williams, D.F.; Ou, K.L.; Oreffo, R.O.C.: Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83, 363–382 (2016) Tang, D.; Tare, R.S.; Yang, L.Y.; Williams, D.F.; Ou, K.L.; Oreffo, R.O.C.: Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83, 363–382 (2016)
5.
Zurück zum Zitat Wu, T.; Yu, S.; Chen, D.; Wang, Y.: Bionic design, materials and performance of bone tissue scaffolds. Materials (Basel) 10, 1187 (2017) Wu, T.; Yu, S.; Chen, D.; Wang, Y.: Bionic design, materials and performance of bone tissue scaffolds. Materials (Basel) 10, 1187 (2017)
6.
Zurück zum Zitat Taraballi, F.; Bauza, G.; McCulloch, P.; Harris, J.; Tasciotti, E.: Concise review: biomimetic functionalization of biomaterials to stimulate the endogenous healing process of cartilage and bone tissue. Stem Cells Transl. Med. 6, 2186–2196 (2017) Taraballi, F.; Bauza, G.; McCulloch, P.; Harris, J.; Tasciotti, E.: Concise review: biomimetic functionalization of biomaterials to stimulate the endogenous healing process of cartilage and bone tissue. Stem Cells Transl. Med. 6, 2186–2196 (2017)
7.
Zurück zum Zitat Truscello, S.; Kerckhofs, G.; Bael, S.; Van, S.; Pyka, G.; Schrooten, J.; Van Oosterwyck, H.: Acta biomaterialia prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Acta Biomater. 8, 1648–1658 (2012) Truscello, S.; Kerckhofs, G.; Bael, S.; Van, S.; Pyka, G.; Schrooten, J.; Van Oosterwyck, H.: Acta biomaterialia prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Acta Biomater. 8, 1648–1658 (2012)
8.
Zurück zum Zitat Li, S.; de Wijn, J.R.; Li, J.; Layrolle, P.; de Groot, K.: Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng. 9, 535–548 (2003) Li, S.; de Wijn, J.R.; Li, J.; Layrolle, P.; de Groot, K.: Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng. 9, 535–548 (2003)
9.
Zurück zum Zitat Klawitter, J.J.; Hulbert, S.F.: Application of porous ceramics for the attachment of load bearing applications. J. Biomed. Mater. Res. Symp. 2, 161 (1971) Klawitter, J.J.; Hulbert, S.F.: Application of porous ceramics for the attachment of load bearing applications. J. Biomed. Mater. Res. Symp. 2, 161 (1971)
10.
Zurück zum Zitat Newman, P.; Zreiqat, H.: Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci. Rep. 6, 19468 (2016) Newman, P.; Zreiqat, H.: Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci. Rep. 6, 19468 (2016)
11.
Zurück zum Zitat Ayers, R.A.; Wolford, L.M.; Bateman, T.A.; Ferguson, V.L.; Simske, S.J.: Quantification of bone ingrowth into porous block hydroxyapatite in humans. J. Biomed. Mater. Res. 47, 54–59 (1999) Ayers, R.A.; Wolford, L.M.; Bateman, T.A.; Ferguson, V.L.; Simske, S.J.: Quantification of bone ingrowth into porous block hydroxyapatite in humans. J. Biomed. Mater. Res. 47, 54–59 (1999)
12.
Zurück zum Zitat Deb, P.; Barua, E.; Deoghare, A.B.; Lala, S.D.: Development of bone scaffold using Puntius conchonius fish scale derived hydroxyapatite: physico-mechanical and bioactivity evaluations. Ceram. Int. 45, 10004–10012 (2019) Deb, P.; Barua, E.; Deoghare, A.B.; Lala, S.D.: Development of bone scaffold using Puntius conchonius fish scale derived hydroxyapatite: physico-mechanical and bioactivity evaluations. Ceram. Int. 45, 10004–10012 (2019)
13.
Zurück zum Zitat Nauman, E.A.; Fong, K.E.; Keaveny, T.M.: Dependence of intertrabecular permeability on flow direction and anatomic site. Ann. Biomed. Eng. 27, 517–524 (1999) Nauman, E.A.; Fong, K.E.; Keaveny, T.M.: Dependence of intertrabecular permeability on flow direction and anatomic site. Ann. Biomed. Eng. 27, 517–524 (1999)
14.
Zurück zum Zitat Blokhuis, T.J.; Termaat, M.F.; den Boer, F.C.; Patka, P.; Bakker, F.C.; Haarman, H.J.T.M.: Properties of calcium phosphate ceramics in relation to their in vivo behavior. J. Trauma Inj. Infect. Crit. Care 48, 179 (2003) Blokhuis, T.J.; Termaat, M.F.; den Boer, F.C.; Patka, P.; Bakker, F.C.; Haarman, H.J.T.M.: Properties of calcium phosphate ceramics in relation to their in vivo behavior. J. Trauma Inj. Infect. Crit. Care 48, 179 (2003)
15.
Zurück zum Zitat Albrektsson, T.; Johansson, C.: Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 10, S96–S101 (2001) Albrektsson, T.; Johansson, C.: Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 10, S96–S101 (2001)
16.
Zurück zum Zitat Botchwey, E.A.; Dupree, M.A.; Pollack, S.R.; Levine, E.M.; Laurencin, C.T.: Tissue engineered bone: measurement of nutrient transport in three-dimensional matrices. J. Biomed. Mater. Res., Part A 67, 357–367 (2003) Botchwey, E.A.; Dupree, M.A.; Pollack, S.R.; Levine, E.M.; Laurencin, C.T.: Tissue engineered bone: measurement of nutrient transport in three-dimensional matrices. J. Biomed. Mater. Res., Part A 67, 357–367 (2003)
17.
Zurück zum Zitat Andrades, A.; Narváez-Ledesma, L.; Cerón-Torres, L.; Cruz-Amaya, P.; LópezGuillén, D.; Laura Mesa-Almagro, M.; Moreno-Moreno, A.: Bone engineering: a matter of cells, growth factors and biomaterials. In: Regenerative Medicine and Tissue Engineering, vol. 25, pp. 616–618. InTech (2013) Andrades, A.; Narváez-Ledesma, L.; Cerón-Torres, L.; Cruz-Amaya, P.; LópezGuillén, D.; Laura Mesa-Almagro, M.; Moreno-Moreno, A.: Bone engineering: a matter of cells, growth factors and biomaterials. In: Regenerative Medicine and Tissue Engineering, vol. 25, pp. 616–618. InTech (2013)
18.
Zurück zum Zitat Blackwood, K.A.; Bock, N.; Dargaville, T.R.; Ann Woodruff, M.: Scaffolds for growth factor delivery as applied to bone tissue engineering. Int. J. Polym. Sci. 2012, 1–25 (2012) Blackwood, K.A.; Bock, N.; Dargaville, T.R.; Ann Woodruff, M.: Scaffolds for growth factor delivery as applied to bone tissue engineering. Int. J. Polym. Sci. 2012, 1–25 (2012)
19.
Zurück zum Zitat Bancroft, G.N.; Sikavitsas, V.I.; van den Dolder, J.; Sheffield, T.L.; Ambrose, C.G.; Jansen, J.A.; Mikos, A.G.: Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. 99, 12600–12605 (2002) Bancroft, G.N.; Sikavitsas, V.I.; van den Dolder, J.; Sheffield, T.L.; Ambrose, C.G.; Jansen, J.A.; Mikos, A.G.: Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. 99, 12600–12605 (2002)
20.
Zurück zum Zitat Carver, S.E.; Heath, C.A.: Influence of intermittent pressure, fluid flow, and mixing on the regenerative properties of articular chondrocytes. Biotechnol. Bioeng. 65, 274–281 (1999) Carver, S.E.; Heath, C.A.: Influence of intermittent pressure, fluid flow, and mixing on the regenerative properties of articular chondrocytes. Biotechnol. Bioeng. 65, 274–281 (1999)
21.
Zurück zum Zitat Fritton, S.P.: Fluid and solute trnasport in bone: flow-induced mechanotransduction. Annu. Rev. Fluid Mech. 41, 347–374 (2010)MATH Fritton, S.P.: Fluid and solute trnasport in bone: flow-induced mechanotransduction. Annu. Rev. Fluid Mech. 41, 347–374 (2010)MATH
22.
Zurück zum Zitat Jaasma, M.J.; O’Brien, F.J.: Mechanical Stimulation of Osteoblasts Using Steady and Dynamic Fluid Flow. Tissue Eng. Part A 14, 1213–1223 (2008) Jaasma, M.J.; O’Brien, F.J.: Mechanical Stimulation of Osteoblasts Using Steady and Dynamic Fluid Flow. Tissue Eng. Part A 14, 1213–1223 (2008)
23.
Zurück zum Zitat Bhaskar, B.; Owen, R.; Bahmaee, H.; Rao, P.S.; Reilly, G.C.: Design and assessment of a dynamic perfusion bioreactor for large bone tissue engineering scaffolds. Appl. Biochem. Biotechnol. 185, 555–563 (2018) Bhaskar, B.; Owen, R.; Bahmaee, H.; Rao, P.S.; Reilly, G.C.: Design and assessment of a dynamic perfusion bioreactor for large bone tissue engineering scaffolds. Appl. Biochem. Biotechnol. 185, 555–563 (2018)
24.
Zurück zum Zitat Maes, F.; Van Ransbeeck, P.; Van Oosterwyck, H.; Verdonck, P.: Modeling fluid flow through irregular scaffolds for perfusion bioreactors. Biotechnol. Bioeng. 103, 621–630 (2009) Maes, F.; Van Ransbeeck, P.; Van Oosterwyck, H.; Verdonck, P.: Modeling fluid flow through irregular scaffolds for perfusion bioreactors. Biotechnol. Bioeng. 103, 621–630 (2009)
25.
Zurück zum Zitat Voronov, R.; Vangordon, S.; Sikavitsas, V.I.; Papavassiliou, D.V.: Computational modeling of flow-induced shear stresses within 3D salt-leached porous scaffolds imaged via micro-CT. J. Biomech. 43, 1279–1286 (2010) Voronov, R.; Vangordon, S.; Sikavitsas, V.I.; Papavassiliou, D.V.: Computational modeling of flow-induced shear stresses within 3D salt-leached porous scaffolds imaged via micro-CT. J. Biomech. 43, 1279–1286 (2010)
26.
Zurück zum Zitat Sabzi, M.; Far, S.M.; Dezfuli, S.M.: Characterization of bioactivity behavior and corrosion responses of hydroxyapatite-ZnO nanostructured coating deposited on NiTi shape memory alloy‎. Ceram. Int. 44, 21395–21405 (2018) Sabzi, M.; Far, S.M.; Dezfuli, S.M.: Characterization of bioactivity behavior and corrosion responses of hydroxyapatite-ZnO nanostructured coating deposited on NiTi shape memory alloy‎. Ceram. Int. 44, 21395–21405 (2018)
27.
Zurück zum Zitat Mersagh Dezfuli, S.; Sabzi, M.: Deposition of ceramic nanocomposite coatings by electroplating process: a review of layer-deposition mechanisms and effective parameters on the formation of the coating. Ceram. Int. 45, 21835–21842 (2019) Mersagh Dezfuli, S.; Sabzi, M.: Deposition of ceramic nanocomposite coatings by electroplating process: a review of layer-deposition mechanisms and effective parameters on the formation of the coating. Ceram. Int. 45, 21835–21842 (2019)
28.
Zurück zum Zitat Mousavi Anijdan, S.H.; Sabzi, M.; Asadian, M.; Jafarian, H.R.: Effect of sub-layer temperature during HFCVD process on morphology and corrosion behavior of tungsten carbide coating. Int. J. Appl. Ceram. Technol. 16, 243–253 (2019) Mousavi Anijdan, S.H.; Sabzi, M.; Asadian, M.; Jafarian, H.R.: Effect of sub-layer temperature during HFCVD process on morphology and corrosion behavior of tungsten carbide coating. Int. J. Appl. Ceram. Technol. 16, 243–253 (2019)
29.
Zurück zum Zitat Sabzi, M.; Mousavi Anijdan, S.H.; Asadian, M.: The effect of substrate temperature on microstructural evolution and hardenability of tungsten carbide coating in hot filament chemical vapor deposition. Int. J. Appl. Ceram. Technol. 15, 1350–1357 (2018) Sabzi, M.; Mousavi Anijdan, S.H.; Asadian, M.: The effect of substrate temperature on microstructural evolution and hardenability of tungsten carbide coating in hot filament chemical vapor deposition. Int. J. Appl. Ceram. Technol. 15, 1350–1357 (2018)
30.
Zurück zum Zitat Sabzi, M.; Mousavi Anijdan, S.H.; Ghobeiti-Hasab, M.; Fatemi-Mehr, M.: Sintering variables optimization, microstructural evolution and physical properties enhancement of nano-WC ceramics. J. Alloys Compd. 766, 672–677 (2018) Sabzi, M.; Mousavi Anijdan, S.H.; Ghobeiti-Hasab, M.; Fatemi-Mehr, M.: Sintering variables optimization, microstructural evolution and physical properties enhancement of nano-WC ceramics. J. Alloys Compd. 766, 672–677 (2018)
31.
Zurück zum Zitat Sabzi, M.; Mersagh Dezfuli, S.: A study on the effect of compositing silver oxide nanoparticles by carbon on the electrochemical behavior and electronic properties of zinc-silver oxide batteries. Int. J. Appl. Ceram. Technol. 15, 1446–1458 (2018) Sabzi, M.; Mersagh Dezfuli, S.: A study on the effect of compositing silver oxide nanoparticles by carbon on the electrochemical behavior and electronic properties of zinc-silver oxide batteries. Int. J. Appl. Ceram. Technol. 15, 1446–1458 (2018)
32.
Zurück zum Zitat Ragunathan, S.; Govindasamy, G.; Raghul, D.R.; Karuppaswamy, M.; VijayachandraTogo, R.K.: Hydroxyapatite Reinforced Natural Polymer Scaffold for Bone Tissue Regeneration. In: Materials Today Proceedings (2019) Ragunathan, S.; Govindasamy, G.; Raghul, D.R.; Karuppaswamy, M.; VijayachandraTogo, R.K.: Hydroxyapatite Reinforced Natural Polymer Scaffold for Bone Tissue Regeneration. In: Materials Today Proceedings (2019)
33.
Zurück zum Zitat Elrayah, A.; Xiao, D.; Suliman, E.; Weng, J.: A simple method to prepare hybrid hydroxyapatite scaffold mimicking nature bone. Ceram. Int. 45, 18931–18936 (2019) Elrayah, A.; Xiao, D.; Suliman, E.; Weng, J.: A simple method to prepare hybrid hydroxyapatite scaffold mimicking nature bone. Ceram. Int. 45, 18931–18936 (2019)
34.
Zurück zum Zitat Li, Z.; Chu, D.; Gao, Y.; Jin, L.; Zhang, X.; Cui, W.; Li, J.: Biomimicry, biomineralization, and bioregeneration of bone using advanced three-dimensional fibrous hydroxyapatite scaffold. Mater. Today Adv. 3, 100014 (2019) Li, Z.; Chu, D.; Gao, Y.; Jin, L.; Zhang, X.; Cui, W.; Li, J.: Biomimicry, biomineralization, and bioregeneration of bone using advanced three-dimensional fibrous hydroxyapatite scaffold. Mater. Today Adv. 3, 100014 (2019)
35.
Zurück zum Zitat Hannink, G.; Arts, J.J.C.: Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury 42, S22–S25 (2011) Hannink, G.; Arts, J.J.C.: Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury 42, S22–S25 (2011)
36.
Zurück zum Zitat He, L.; Standard, O.C.; Huang, T.T.Y.; Latella, B.A.; Swain, M.V.: Mechanical behaviour of porous hydroxyapatite. Acta Biomater. 4, 577–586 (2008) He, L.; Standard, O.C.; Huang, T.T.Y.; Latella, B.A.; Swain, M.V.: Mechanical behaviour of porous hydroxyapatite. Acta Biomater. 4, 577–586 (2008)
37.
Zurück zum Zitat Xu, S.; Guo, W.; Lu, J.; Li, W.: Fabrication and mechanical properties of PLLA and CPC composite scaffolds †. J. Mech. Sci. Technol. 26, 2857–2862 (2012) Xu, S.; Guo, W.; Lu, J.; Li, W.: Fabrication and mechanical properties of PLLA and CPC composite scaffolds †. J. Mech. Sci. Technol. 26, 2857–2862 (2012)
38.
Zurück zum Zitat Barua, E.; Deoghare, A.B.; Chatterjee, S.; Sapkal, P.: Effect of ZnO reinforcement on the compressive properties, in vitro bioactivity, biodegradability and cytocompatibility of bone scaffold developed from bovine bone-derived HAp and PMMA. Ceram. Int. 45(16), 20331–20345 (2019) Barua, E.; Deoghare, A.B.; Chatterjee, S.; Sapkal, P.: Effect of ZnO reinforcement on the compressive properties, in vitro bioactivity, biodegradability and cytocompatibility of bone scaffold developed from bovine bone-derived HAp and PMMA. Ceram. Int. 45(16), 20331–20345 (2019)
39.
Zurück zum Zitat Pang, Y.X.; Bao, X.: Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J. Eur. Ceram. Soc. 23, 1697–1704 (2003) Pang, Y.X.; Bao, X.: Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J. Eur. Ceram. Soc. 23, 1697–1704 (2003)
40.
Zurück zum Zitat Vossenberg, P.; Higuera, G.A.; van Straten, G.; van Blitterswijk, C.A.; van Boxtel, A.J.B.: Darcian permeability constant as indicator for shear stresses in regular scaffold systems for tissue engineering. Biomech. Model. Mechanobiol. 8, 499–507 (2009) Vossenberg, P.; Higuera, G.A.; van Straten, G.; van Blitterswijk, C.A.; van Boxtel, A.J.B.: Darcian permeability constant as indicator for shear stresses in regular scaffold systems for tissue engineering. Biomech. Model. Mechanobiol. 8, 499–507 (2009)
41.
Zurück zum Zitat Dias, M.R.; Fernandes, P.R.; Guedes, J.M.; Hollister, S.J.: Permeability analysis of scaffolds for bone tissue engineering. J. Biomech. 45, 938–944 (2012) Dias, M.R.; Fernandes, P.R.; Guedes, J.M.; Hollister, S.J.: Permeability analysis of scaffolds for bone tissue engineering. J. Biomech. 45, 938–944 (2012)
42.
Zurück zum Zitat Ali, D.; Sen, S.: Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models. Comput. Biol. Med. 99, 201–208 (2018) Ali, D.; Sen, S.: Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models. Comput. Biol. Med. 99, 201–208 (2018)
43.
Zurück zum Zitat Barua, E.; Das, A.; Pamu, D.; Deoghare, A.B.; Deb, P.; Das, S.: Effect of thermal treatment on the physico-chemical properties of bioactive hydroxyapatite derived from caprine bone bio-waste. Ceram. Int. 45, 23265–23277 (2019) Barua, E.; Das, A.; Pamu, D.; Deoghare, A.B.; Deb, P.; Das, S.: Effect of thermal treatment on the physico-chemical properties of bioactive hydroxyapatite derived from caprine bone bio-waste. Ceram. Int. 45, 23265–23277 (2019)
44.
Zurück zum Zitat Shi, Y.; Liu, J.; Yu, L.; Zhen, L.; Bo, H.: β-TCP sca ff old coated with PCL as biodegradable materials for dental applications. Ceram. Int. 44, 15086–15091 (2018) Shi, Y.; Liu, J.; Yu, L.; Zhen, L.; Bo, H.: β-TCP sca ff old coated with PCL as biodegradable materials for dental applications. Ceram. Int. 44, 15086–15091 (2018)
45.
Zurück zum Zitat Murphy, C.M.; Haugh, M.G.; Brien, F.J.O.: Biomaterials the effect of mean pore size on cell attachment, proliferation and migration in collagen—glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31, 461–466 (2010) Murphy, C.M.; Haugh, M.G.; Brien, F.J.O.: Biomaterials the effect of mean pore size on cell attachment, proliferation and migration in collagen—glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31, 461–466 (2010)
46.
Zurück zum Zitat Roohani-esfahani, S.; Nouri-khorasani, S.; Lu, Z.; Appleyard, R.; Zreiqat, H.: Biomaterials The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite e PCL composites. Biomaterials 31, 5498–5509 (2010) Roohani-esfahani, S.; Nouri-khorasani, S.; Lu, Z.; Appleyard, R.; Zreiqat, H.: Biomaterials The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite e PCL composites. Biomaterials 31, 5498–5509 (2010)
47.
Zurück zum Zitat Cioffi, M.; Boschetti, F.; Raimondi, M.T.; Dubini, G.: Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-CT based model. Biotechnol. Bioeng. 93, 500–510 (2006) Cioffi, M.; Boschetti, F.; Raimondi, M.T.; Dubini, G.: Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-CT based model. Biotechnol. Bioeng. 93, 500–510 (2006)
48.
Zurück zum Zitat Olmos, L.; Bouvard, D.; Cabezas-Villa, J.L.; Lemus-Ruiz, J.; Jiménez, O.; Arteaga, D.: Analysis of compression and permeability behavior of porous Ti6Al4V by computed microtomography. Met. Mater. Int. 25, 669–682 (2018) Olmos, L.; Bouvard, D.; Cabezas-Villa, J.L.; Lemus-Ruiz, J.; Jiménez, O.; Arteaga, D.: Analysis of compression and permeability behavior of porous Ti6Al4V by computed microtomography. Met. Mater. Int. 25, 669–682 (2018)
49.
Zurück zum Zitat Innocentini, M.D.M.; Faleiros, R.K.; Pisani, R.; Thijs, I.; Luyten, J.; Mullens, S.: Permeability of porous gelcast scaffolds for bone tissue engineering. J. Porous Mater. 17, 615–627 (2010) Innocentini, M.D.M.; Faleiros, R.K.; Pisani, R.; Thijs, I.; Luyten, J.; Mullens, S.: Permeability of porous gelcast scaffolds for bone tissue engineering. J. Porous Mater. 17, 615–627 (2010)
50.
Zurück zum Zitat Hendrikson, W.J.; Deegan, A.J.; Yang, Y.; van Blitterswijk, C.A.; Verdonschot, N.; Moroni, L.; Rouwkema, J.: Influence of additive manufactured scaffold architecture on the distribution of surface strains and fluid flow shear stresses and expected osteochondral cell differentiation. Front. Bioeng. Biotechnol. 5, 1–11 (2017) Hendrikson, W.J.; Deegan, A.J.; Yang, Y.; van Blitterswijk, C.A.; Verdonschot, N.; Moroni, L.; Rouwkema, J.: Influence of additive manufactured scaffold architecture on the distribution of surface strains and fluid flow shear stresses and expected osteochondral cell differentiation. Front. Bioeng. Biotechnol. 5, 1–11 (2017)
Metadaten
Titel
Investigation of Physico-mechanical Behavior, Permeability and Wall Shear Stress of Porous HA/PMMA Composite Bone Scaffold
verfasst von
Babar Pasha Mahammod
Emon Barua
Payel Deb
Ashish B. Deoghare
Krishna Murari Pandey
Publikationsdatum
13.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 7/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04467-w

Weitere Artikel der Ausgabe 7/2020

Arabian Journal for Science and Engineering 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.