Skip to main content
Erschienen in: Theoretical and Computational Fluid Dynamics 1/2021

25.08.2020 | Original Article

Investigation of pressure and the Lewis number effects in the context of algebraic flame surface density closure for LES of premixed turbulent combustion

verfasst von: Usman Allauddin, Sai Ranjith Reddy Lomada, Michael Pfitzner

Erschienen in: Theoretical and Computational Fluid Dynamics | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Large scale industrial combustion devices, for example, internal combustion engines, gas turbine combustors, etc., operate under high-pressure conditions and utilize a variety of fuels. Unfortunately, the majority of the current numerical combustion modelling approaches are not fully validated for high-pressure and the non-unity Lewis number (\(\hbox {Le} =\) thermal diffusivity/mass diffusivity) effects in premixed turbulent combustion. In any case, a numerical model needs to be checked for the effects of these parameters to guarantee generality of the model. In the present study, these two critical features of the models are numerically explored utilizing fundamental elements of several algebraic flame surface density reaction rate closure models accessible in the open literature. The Lewis number impact is likewise examined utilizing LES of recently published subgrid scale fractal flame surface density model, which indicated acceptable results for high and low-pressure methane fuelled applications. The computed numerical results are compared with an extensive experimental dataset for lean methane and propane fuels featuring various flow and turbulence conditions at operating pressures in the range of 1–10 bar. The quantitative results from most of the selected models do not show the experimentally observed trends at high-pressures and for non-unity Le number fuels. Modifications to the models are incorporated to reflect effects of these two important parameters utilizing a broad parametric investigation resulting in a satisfactory agreement with the experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000) Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)
2.
Zurück zum Zitat Menon, S., Jou, W.: Large Eddy simulations of combustion instability in an axisymmetric ramjet combustor. Combust. Sci. Technol. 75(1–3), 53–72 (1991) Menon, S., Jou, W.: Large Eddy simulations of combustion instability in an axisymmetric ramjet combustor. Combust. Sci. Technol. 75(1–3), 53–72 (1991)
3.
Zurück zum Zitat Butler, T.D., O’Rourke, P.J.: A numerical method for two dimensional unsteady reacting flows. Proc. Symp. (Int.) Combust. 16(1), 1503–1515 (1977) Butler, T.D., O’Rourke, P.J.: A numerical method for two dimensional unsteady reacting flows. Proc. Symp. (Int.) Combust. 16(1), 1503–1515 (1977)
4.
Zurück zum Zitat Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for Large Eddy simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000) Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for Large Eddy simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)
5.
Zurück zum Zitat Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for Large Eddy simulation of turbulent premixed combustion. Proc. Symp. (Int.) Combust. 27(1), 917–925 (1998) Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for Large Eddy simulation of turbulent premixed combustion. Proc. Symp. (Int.) Combust. 27(1), 917–925 (1998)
6.
Zurück zum Zitat Hawkes, E., Cant, R.S.: A flame surface density approach to Large Eddy simulation of premixed turbulent combustion. Proc. Combust. Inst. 28(1), 51–58 (2000) Hawkes, E., Cant, R.S.: A flame surface density approach to Large Eddy simulation of premixed turbulent combustion. Proc. Combust. Inst. 28(1), 51–58 (2000)
7.
Zurück zum Zitat Duwig, C., Fureby, C.: Large Eddy simulation of unsteady lean stratified premixed combustion. Combust. Flame 151(1–2), 85–103 (2007) Duwig, C., Fureby, C.: Large Eddy simulation of unsteady lean stratified premixed combustion. Combust. Flame 151(1–2), 85–103 (2007)
8.
Zurück zum Zitat Aluri, N., Muppala, S.P.R., Dinkelacker, F.: Large Eddy simulation of lean premixed turbulent flames of three different combustion configurations using a novel reaction closure. Flow Turbul. Combust. 80(2), 207–224 (2008) Aluri, N., Muppala, S.P.R., Dinkelacker, F.: Large Eddy simulation of lean premixed turbulent flames of three different combustion configurations using a novel reaction closure. Flow Turbul. Combust. 80(2), 207–224 (2008)
9.
Zurück zum Zitat Kobayashi, H., Nakashima, T., Tamura, T., Maruta, K., Niioka, T.: Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa. Combust. Flame 108(1–2), 104–117 (1997) Kobayashi, H., Nakashima, T., Tamura, T., Maruta, K., Niioka, T.: Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa. Combust. Flame 108(1–2), 104–117 (1997)
10.
Zurück zum Zitat Bounif, A., Aris, A., Gökalp, I.: Pressure effects on the spectral behaviour of the thermal field in non-reacting and Low Damköhler reacting flows. Int. J. Therm. Sci. 38(9), 819–831 (1999) Bounif, A., Aris, A., Gökalp, I.: Pressure effects on the spectral behaviour of the thermal field in non-reacting and Low Damköhler reacting flows. Int. J. Therm. Sci. 38(9), 819–831 (1999)
11.
Zurück zum Zitat Soika, A., Dinkelacker, F., Leipertz, A.: Pressure influence on the flame front curvature of turbulent premixed flames: comparison between experiment and theory. Combust. Flame 132(3), 451–462 (2003) Soika, A., Dinkelacker, F., Leipertz, A.: Pressure influence on the flame front curvature of turbulent premixed flames: comparison between experiment and theory. Combust. Flame 132(3), 451–462 (2003)
12.
Zurück zum Zitat Kobayashi, H., Kawabata, Y., Maruta, K.: Experimental study on general correlation of turbulent burning velocity at high pressure. Proc. Symp. (Int.) Combust. 27(1), 941–948 (1998) Kobayashi, H., Kawabata, Y., Maruta, K.: Experimental study on general correlation of turbulent burning velocity at high pressure. Proc. Symp. (Int.) Combust. 27(1), 941–948 (1998)
13.
Zurück zum Zitat Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. Edwards, Morningside (2005) Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. Edwards, Morningside (2005)
14.
Zurück zum Zitat Rasool, R., Chakraborty, N., Klein, M.: Algebraic flame surface density modelling of high pressure turbulent premixed Bunsen flames. Flow Turbul. Combust. (2020) Rasool, R., Chakraborty, N., Klein, M.: Algebraic flame surface density modelling of high pressure turbulent premixed Bunsen flames. Flow Turbul. Combust. (2020)
15.
Zurück zum Zitat Alqallaf, A., Klein, M., Dopazo, C., Chakraborty, N.: Evolution of flame curvature in turbulent premixed Bunsen flames at different pressure levels. Flow Turbul. Combust. 103, 439–463 (2019) Alqallaf, A., Klein, M., Dopazo, C., Chakraborty, N.: Evolution of flame curvature in turbulent premixed Bunsen flames at different pressure levels. Flow Turbul. Combust. 103, 439–463 (2019)
16.
Zurück zum Zitat Wnag, X., Jin, T., Xie, Y., Kuo, K.L.: Pressure effects on flame structures and chemical pathways for lean premixed turbulent H\(_{\rm 2}\)/air flames: Three-dimensional DNS studies. Fuel 215, 320–329 (2018) Wnag, X., Jin, T., Xie, Y., Kuo, K.L.: Pressure effects on flame structures and chemical pathways for lean premixed turbulent H\(_{\rm 2}\)/air flames: Three-dimensional DNS studies. Fuel 215, 320–329 (2018)
17.
Zurück zum Zitat Wang, Z., Magi, V., Abraham, J.: Turbulent flame speed dependencies in lean methane-air mixtures under engine relevant conditions. Combust. Flame 180, 53–62 (2017) Wang, Z., Magi, V., Abraham, J.: Turbulent flame speed dependencies in lean methane-air mixtures under engine relevant conditions. Combust. Flame 180, 53–62 (2017)
18.
Zurück zum Zitat Savard, B., Lapointe, S., Teodorczyk, A.: Numerical investigation of the effect of pressure on heat release rate in iso-octane premixed turbulent flames under conditions relevant to SI engines. Proc. Combust. Inst. 36, 3543–3549 (2017) Savard, B., Lapointe, S., Teodorczyk, A.: Numerical investigation of the effect of pressure on heat release rate in iso-octane premixed turbulent flames under conditions relevant to SI engines. Proc. Combust. Inst. 36, 3543–3549 (2017)
19.
Zurück zum Zitat Devaud, C., Bushe, W.K., Bellan, J.: Assessment of Conditional Source-Term Estimation for High Pressure turbulent combustion modelling. AIAA SciTech Forum, San Diego, California (2019) Devaud, C., Bushe, W.K., Bellan, J.: Assessment of Conditional Source-Term Estimation for High Pressure turbulent combustion modelling. AIAA SciTech Forum, San Diego, California (2019)
20.
Zurück zum Zitat Muppala, S.P.R., Aluri, N.K., Dinkelacker, F., Leipertz, A.: Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene and propane/air flames for pressures up to 1.0 MPa. Combust. Flame 140(4), 257–266 (2005) Muppala, S.P.R., Aluri, N.K., Dinkelacker, F., Leipertz, A.: Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene and propane/air flames for pressures up to 1.0 MPa. Combust. Flame 140(4), 257–266 (2005)
21.
Zurück zum Zitat Aluri, N.K., Muppala, S.P.R., Dinkelacker, F.: A test of validation of turbulent premixed models for high-pressure Bunsen flames. In: Proceedings European Combust Meeting (2005) Aluri, N.K., Muppala, S.P.R., Dinkelacker, F.: A test of validation of turbulent premixed models for high-pressure Bunsen flames. In: Proceedings European Combust Meeting (2005)
22.
Zurück zum Zitat Aluri, N.K., Muppala, S.P.R., Dinkelacker, F.: Substantiating a fractal-based algebraic reaction closure of premixed turbulent combustion for high pressure and the Lewis number effects. Combust. Flame 145, 663–774 (2006) Aluri, N.K., Muppala, S.P.R., Dinkelacker, F.: Substantiating a fractal-based algebraic reaction closure of premixed turbulent combustion for high pressure and the Lewis number effects. Combust. Flame 145, 663–774 (2006)
23.
Zurück zum Zitat Dinkelacker, F., Manickam, B., Muppala, S.P.R., Aluri, N.K.: Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames for two flow configurations. In: Proceedings of CHT-08 ICHMT International Symposium on Advances in Computational Heat Transfer (2008) Dinkelacker, F., Manickam, B., Muppala, S.P.R., Aluri, N.K.: Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames for two flow configurations. In: Proceedings of CHT-08 ICHMT International Symposium on Advances in Computational Heat Transfer (2008)
24.
Zurück zum Zitat Dinkelacker, F., Manickam, B., Muppala, S.P.R.: Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach. Combust. Flame 158(9), 1742–1749 (2011) Dinkelacker, F., Manickam, B., Muppala, S.P.R.: Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach. Combust. Flame 158(9), 1742–1749 (2011)
25.
Zurück zum Zitat Lindstedt, R., Váos, E.: Modelling of premixed turbulent flames with second moment methods. Combust. Flame 116(4), 461–485 (1999) Lindstedt, R., Váos, E.: Modelling of premixed turbulent flames with second moment methods. Combust. Flame 116(4), 461–485 (1999)
26.
Zurück zum Zitat Keppeler, K., Tangermann, E., Allauddin, U., Pfitzner, M.: LES of low to high turbulent combustion in an elevated pressure environment. Flow Turbul. Combust. 92(3), 767–802 (2014) Keppeler, K., Tangermann, E., Allauddin, U., Pfitzner, M.: LES of low to high turbulent combustion in an elevated pressure environment. Flow Turbul. Combust. 92(3), 767–802 (2014)
27.
Zurück zum Zitat Allauddin, U., Keppeler, K., Pfitzner, M.: Turbulent premixed les combustion models based on fractal flame surface density concepts. In: Proceedings of ASME Turbo Expo: Turbine Technical Conference and Exposition GT2014 June 16–20, 2014. German, Düsseldorf (2014) Allauddin, U., Keppeler, K., Pfitzner, M.: Turbulent premixed les combustion models based on fractal flame surface density concepts. In: Proceedings of ASME Turbo Expo: Turbine Technical Conference and Exposition GT2014 June 16–20, 2014. German, Düsseldorf (2014)
28.
Zurück zum Zitat Allauddin, U., Pfitzner, M.: Development of a RANS premixed turbulent combustion model based on the algebraic flame surface density concept. J. Eng. Gas Turbines Power 141, 1–8 (2019) Allauddin, U., Pfitzner, M.: Development of a RANS premixed turbulent combustion model based on the algebraic flame surface density concept. J. Eng. Gas Turbines Power 141, 1–8 (2019)
29.
Zurück zum Zitat Lipatnikov, A.N., Chomiak, J.: Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. Sci. 31(1), 1–73 (2005) Lipatnikov, A.N., Chomiak, J.: Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. Sci. 31(1), 1–73 (2005)
30.
Zurück zum Zitat Abdel-Gayed, R.G., Bradley, D., Hamid, M.N., Lawes, M.: Lewis number effects on turbulent burning velocity. Symp. (Int.) Combust. 20(1), 505–512 (1984) Abdel-Gayed, R.G., Bradley, D., Hamid, M.N., Lawes, M.: Lewis number effects on turbulent burning velocity. Symp. (Int.) Combust. 20(1), 505–512 (1984)
31.
Zurück zum Zitat Chakraborty, N., Cant, R.S.: Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158(9), 1768–1787 (2011) Chakraborty, N., Cant, R.S.: Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158(9), 1768–1787 (2011)
32.
Zurück zum Zitat Klein, M., Chakraborty, N., Pfitzner, M.: Analysis of the combined modelling of sub-grid transport and filtered flame propagation for premixed turbulent combustion. Flow Turbul. Combust. 96(4), 921–938 (2016) Klein, M., Chakraborty, N., Pfitzner, M.: Analysis of the combined modelling of sub-grid transport and filtered flame propagation for premixed turbulent combustion. Flow Turbul. Combust. 96(4), 921–938 (2016)
33.
Zurück zum Zitat Angelberger, C., Veynante, D., Egolfopoulos, F., Poinsot, T.: Large Eddy simulations of combustion instabilities in premixed flames. In: Proceedings of Summer Program, Center for Turbulence Research, 5–31 July 1998, NASA Ames/Stanford University, pp. 61-82 (1998) Angelberger, C., Veynante, D., Egolfopoulos, F., Poinsot, T.: Large Eddy simulations of combustion instabilities in premixed flames. In: Proceedings of Summer Program, Center for Turbulence Research, 5–31 July 1998, NASA Ames/Stanford University, pp. 61-82 (1998)
34.
Zurück zum Zitat Fureby, C.: A fractal flame wrinkling Large Eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30(1), 593–601 (2005) Fureby, C.: A fractal flame wrinkling Large Eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30(1), 593–601 (2005)
35.
Zurück zum Zitat Zimont, V., Lipatnikov, A.: A numerical model of premixed turbulent combustion of gases. Chem. Phys. Rep. 14(7), 993–1025 (1995) Zimont, V., Lipatnikov, A.: A numerical model of premixed turbulent combustion of gases. Chem. Phys. Rep. 14(7), 993–1025 (1995)
36.
Zurück zum Zitat Kobayashi, H., Tamura, T., Maruta, K., Niioka, T., Williams, F.A.: Burning velocity of turbulent premixed flames in a high pressure environment. Proc. Combust. Inst. 26(1), 389–396 (1996) Kobayashi, H., Tamura, T., Maruta, K., Niioka, T., Williams, F.A.: Burning velocity of turbulent premixed flames in a high pressure environment. Proc. Combust. Inst. 26(1), 389–396 (1996)
37.
Zurück zum Zitat Gouldin, F.: An application of fractals to modelling premixed turbulent flames. Combust. Flame 68(3), 249–266 (1987) Gouldin, F.: An application of fractals to modelling premixed turbulent flames. Combust. Flame 68(3), 249–266 (1987)
38.
Zurück zum Zitat Allauddin, U., Klein, M., Pfitzner, M., Chakraborty, N.: A-priori and a-posteriori analysis of algebraic flame surface density modelling in the context of Large Eddy Simulation of Turbulent Premixed Combustion. Numer. Heat Transfer Part A 71(2), 153–171 (2014) Allauddin, U., Klein, M., Pfitzner, M., Chakraborty, N.: A-priori and a-posteriori analysis of algebraic flame surface density modelling in the context of Large Eddy Simulation of Turbulent Premixed Combustion. Numer. Heat Transfer Part A 71(2), 153–171 (2014)
39.
Zurück zum Zitat Schumann, U.: Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli. J. Comput. Phys. 18(1), 376–404 (1975) Schumann, U.: Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli. J. Comput. Phys. 18(1), 376–404 (1975)
40.
Zurück zum Zitat Fureby, C., Tabor, G., Weller, H.G., Gosman, A.D.: A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys. Fluids 9(5), 1416–1429 (1997)MathSciNet Fureby, C., Tabor, G., Weller, H.G., Gosman, A.D.: A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys. Fluids 9(5), 1416–1429 (1997)MathSciNet
41.
Zurück zum Zitat Clavin, P.: Dynamic behaviour of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. 11(1), 1–59 (1985) Clavin, P.: Dynamic behaviour of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. 11(1), 1–59 (1985)
42.
Zurück zum Zitat Muller, U.C., Bollig, M., Peters, N.: Approximations for burning velocities and Markstein numbers for lean hydrocarbon and methanol flames. Combust. Flame 108(3), 349–356 (1997) Muller, U.C., Bollig, M., Peters, N.: Approximations for burning velocities and Markstein numbers for lean hydrocarbon and methanol flames. Combust. Flame 108(3), 349–356 (1997)
43.
Zurück zum Zitat Hawkes, E., Cant, R.S.: Implications of a flame surface density approach to Large Eddy simulation of turbulent premixed combustion. Combust. Flame 126(3), 1617–1629 (2001) Hawkes, E., Cant, R.S.: Implications of a flame surface density approach to Large Eddy simulation of turbulent premixed combustion. Combust. Flame 126(3), 1617–1629 (2001)
44.
Zurück zum Zitat Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86(4), 311–332 (1999) Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86(4), 311–332 (1999)
45.
Zurück zum Zitat Keppeler, R.: Entwicklung und Evaluierung von Verbrennungsmodellen für die Large Eddy Simulation der Hochdruck-Vermischverbrennung. PhD. Thesis, University of Bundeswehr, Munich (2013) Keppeler, R.: Entwicklung und Evaluierung von Verbrennungsmodellen für die Large Eddy Simulation der Hochdruck-Vermischverbrennung. PhD. Thesis, University of Bundeswehr, Munich (2013)
46.
Zurück zum Zitat Kempf, A., Klein, M., Janicka, J.: Efficient generation of initial and inflow conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74(1), 67–84 (2005) Kempf, A., Klein, M., Janicka, J.: Efficient generation of initial and inflow conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74(1), 67–84 (2005)
47.
Zurück zum Zitat Tangermann, E., Pfitzner, M.: Evaluation of combustion models for combustion-induced vortex break-down. J. Turbul. 10, N7 (2009) Tangermann, E., Pfitzner, M.: Evaluation of combustion models for combustion-induced vortex break-down. J. Turbul. 10, N7 (2009)
49.
Zurück zum Zitat Bray, K.N.C., Moss, J.B.: A unified statistical model of the premixed turbulent flame. Acta Astronaut. 4(3–4), 291–319 (1977) Bray, K.N.C., Moss, J.B.: A unified statistical model of the premixed turbulent flame. Acta Astronaut. 4(3–4), 291–319 (1977)
50.
Zurück zum Zitat Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of Large Eddy simulation. Phys. Fluids 20(8), 85–108 (2008) Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of Large Eddy simulation. Phys. Fluids 20(8), 85–108 (2008)
51.
Zurück zum Zitat Ma, T., Stein, O.T., Chakraborty, N., Kempf, A.M.: A posteriori testing of algebraic flame surface density models for LES. Combust. Theor. Model. 17(3), 431–482 (2013)MathSciNet Ma, T., Stein, O.T., Chakraborty, N., Kempf, A.M.: A posteriori testing of algebraic flame surface density models for LES. Combust. Theor. Model. 17(3), 431–482 (2013)MathSciNet
52.
Zurück zum Zitat Ma, T., Stein, O.T., Chakraborty, N., Kempf, A.M.: A posteriori testing of the flame surface density transport equation for LES. Combust. Theor. Model. 18(1), 32–64 (2014)MathSciNet Ma, T., Stein, O.T., Chakraborty, N., Kempf, A.M.: A posteriori testing of the flame surface density transport equation for LES. Combust. Theor. Model. 18(1), 32–64 (2014)MathSciNet
53.
Zurück zum Zitat Katragadda, M., Chakraborty, N., Cant, R.S.: A priori assessment of algebraic flame surface density models in the context of Large Eddy simulation for non-unity Lewis number flames in the thin reaction zones regime. J. Combust. 2012, article ID 794671, 17 pages (2012) Katragadda, M., Chakraborty, N., Cant, R.S.: A priori assessment of algebraic flame surface density models in the context of Large Eddy simulation for non-unity Lewis number flames in the thin reaction zones regime. J. Combust. 2012, article ID 794671, 17 pages (2012)
54.
Zurück zum Zitat Katragadda, M., Chakraborty, N., Cant, R. S.: Effects of turbulent reynolds number on the performance of algebraic flame surface density models for Large Eddy simulation in the thin reaction zones regime: a direct numerical simulation analysis. J. Combust. 2012, article ID 353257, 13 pages (2012) Katragadda, M., Chakraborty, N., Cant, R. S.: Effects of turbulent reynolds number on the performance of algebraic flame surface density models for Large Eddy simulation in the thin reaction zones regime: a direct numerical simulation analysis. J. Combust. 2012, article ID 353257, 13 pages (2012)
55.
Zurück zum Zitat Allauddin, U.: Modelling of Turbulent Premixed Flames using LES and RANS Methods. PhD Thesis, University of Bundeswehr, Munich (2017) Allauddin, U.: Modelling of Turbulent Premixed Flames using LES and RANS Methods. PhD Thesis, University of Bundeswehr, Munich (2017)
56.
Zurück zum Zitat Driscoll, J.F.: Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34(1), 91–134 (2008) Driscoll, J.F.: Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34(1), 91–134 (2008)
57.
Zurück zum Zitat Kobayashi, H., Kawazoe, H.: Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames. Proc. Combust. Inst. 28(1), 375–382 (2000) Kobayashi, H., Kawazoe, H.: Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames. Proc. Combust. Inst. 28(1), 375–382 (2000)
Metadaten
Titel
Investigation of pressure and the Lewis number effects in the context of algebraic flame surface density closure for LES of premixed turbulent combustion
verfasst von
Usman Allauddin
Sai Ranjith Reddy Lomada
Michael Pfitzner
Publikationsdatum
25.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Theoretical and Computational Fluid Dynamics / Ausgabe 1/2021
Print ISSN: 0935-4964
Elektronische ISSN: 1432-2250
DOI
https://doi.org/10.1007/s00162-020-00543-x

Weitere Artikel der Ausgabe 1/2021

Theoretical and Computational Fluid Dynamics 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.