Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 12/2021

23.06.2021 | Research Article-Mechanical Engineering

Investigation of Ring Rolling Key Parameters for Decreasing Geometrical Ring Defects by 3D Finite Element and Experiments

verfasst von: Hosein Zayadi, Ali Parvizi, Hamid Reza Farahmand, Davood Rahmatabadi

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The complexity of adjusting ring rolling process parameters is always a great challenge for producing high-quality rings. Inappropriate adjustment of main process parameters, including mandrel feed speed, main roll rotational velocity and guide rolls forces, may lead to geometrical defects such as fishtail, non-circularity and polygon-shaped rings. In this paper, for the first time, the effects of noted main parameters on the above geometrical defects are thoroughly investigated using simulation by Abaqus\Explicit as well as experimental data obtained by radial–axial ring rolling (RARR) setup. Experimental results confirm the final ring geometry, which was obtained by the finite element method. The results show that the individual main process parameters such as mandrel feed speed and main roll rotational velocity have an insignificant effect on a non-circularity defect. However, lower mandrel feed speed-to-rotational speed ratios (F/RT) causes a slight decrease in the value of non-circularity. Furthermore, it was shown that increasing feed speed decreases the fishtail defect due to the diffusion of the plastic zone to the whole ring cross section. This effect can also be obtained by reducing the main roll rotational velocity. Thus, increasing mandrel feed speed improves ring geometrical quality if the process remains in stable condition. In addition to eliminating fishtail defect, the existence of axial rolls would enhance process stability by restricting ring motion and avoiding the ring wobbling and polygon-shaped defect forming in the final ring.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
standard deviation of equivalent plastic temperature.
 
2
standard deviation of equivalent plastic strain.
 
3
Closed-loop Systems use feedback where a portion of the output signal is fed back to the input to reduce errors and improve stability.
 
Literatur
1.
Zurück zum Zitat Parvizi, A.; Abrinia, K.: A two dimensional upper bound analysis of the ring rolling process with experimental and FEM verifications. Int. J. Mech. Sci. 79, 176–181 (2014)CrossRef Parvizi, A.; Abrinia, K.: A two dimensional upper bound analysis of the ring rolling process with experimental and FEM verifications. Int. J. Mech. Sci. 79, 176–181 (2014)CrossRef
2.
Zurück zum Zitat Parvizi, A.; Abrinia, K.; Salimi, M.: Slab analysis of ring rolling assuming constant shear friction. J. Mater. Eng. Perform. 20, 1505–1511 (2011)CrossRef Parvizi, A.; Abrinia, K.; Salimi, M.: Slab analysis of ring rolling assuming constant shear friction. J. Mater. Eng. Perform. 20, 1505–1511 (2011)CrossRef
3.
Zurück zum Zitat Tang, X.; Wang, B.; Zhang, H.; Fu, X.; Ji, H.: Study on the microstructure evolution during radial-axial ring rolling of IN718 using a unified internal state variable material model. Int. J. Mech. Sci. 128–129, 235–252 (2017)CrossRef Tang, X.; Wang, B.; Zhang, H.; Fu, X.; Ji, H.: Study on the microstructure evolution during radial-axial ring rolling of IN718 using a unified internal state variable material model. Int. J. Mech. Sci. 128–129, 235–252 (2017)CrossRef
4.
Zurück zum Zitat Wang, C.; Van Den Boogaard, T.; Omerspahic, E.; Recina, V.; Geijselaers, B.: Influence of feed rate on damage development in hot ring rolling. J. Mater. Process. Technol. 81, 292–297 (2014) Wang, C.; Van Den Boogaard, T.; Omerspahic, E.; Recina, V.; Geijselaers, B.: Influence of feed rate on damage development in hot ring rolling. J. Mater. Process. Technol. 81, 292–297 (2014)
5.
Zurück zum Zitat Chen, S.W.; Liu, H.M.; Peng, Y.; Sun, J.L.: Strip layer method for simulation of the three-dimensional deformations of large cylindrical shell rolling. Int. J. Mech. Sci. 77, 113–120 (2013)CrossRef Chen, S.W.; Liu, H.M.; Peng, Y.; Sun, J.L.: Strip layer method for simulation of the three-dimensional deformations of large cylindrical shell rolling. Int. J. Mech. Sci. 77, 113–120 (2013)CrossRef
6.
Zurück zum Zitat Luo, X.; Li, L.; Xu, W.; Zhu, Y.: Effect of driver roll rotational speed on hot ring rolling of AZ31 magnesium alloy. J. Magnes Alloy 2, 154–158 (2014)CrossRef Luo, X.; Li, L.; Xu, W.; Zhu, Y.: Effect of driver roll rotational speed on hot ring rolling of AZ31 magnesium alloy. J. Magnes Alloy 2, 154–158 (2014)CrossRef
7.
Zurück zum Zitat Li, X.; Wang, H.Y.; Ding, J.G.; Xu, J.J.; Zhang, D.H.: Analysis and prediction of fishtail during V-H hot rolling process. J. Cent. South Univ. 22, 1184–1190 (2015)CrossRef Li, X.; Wang, H.Y.; Ding, J.G.; Xu, J.J.; Zhang, D.H.: Analysis and prediction of fishtail during V-H hot rolling process. J. Cent. South Univ. 22, 1184–1190 (2015)CrossRef
8.
Zurück zum Zitat Zhou, J.; Wang, F.L.; Wang, M.H.; Xu, W.J.: Study on forming defects in the rolling process of large aluminum alloy ring via adaptive controlled simulation. Int. J. Adv. Manuf. Technol. 55, 95–106 (2011)CrossRef Zhou, J.; Wang, F.L.; Wang, M.H.; Xu, W.J.: Study on forming defects in the rolling process of large aluminum alloy ring via adaptive controlled simulation. Int. J. Adv. Manuf. Technol. 55, 95–106 (2011)CrossRef
9.
Zurück zum Zitat Giorleo, L.; Ceretti, E.; Giardini, C.: Investigation of the Fishtail Defect in Ring Rolling by a FEM Approach. In: Proceedings of the NAMRI/SME 40 (2012) Giorleo, L.; Ceretti, E.; Giardini, C.: Investigation of the Fishtail Defect in Ring Rolling by a FEM Approach. In: Proceedings of the NAMRI/SME 40 (2012)
10.
Zurück zum Zitat Zhou, G.; Hua, L.; Qian, D.; Shi, D.; Li, H.: Effects of axial rolls motions on radial-axial rolling process for large-scale alloy steel ring with 3D coupled thermo-mechanical FEA. Int. J. Mech. Sci. 59, 1–7 (2012)CrossRef Zhou, G.; Hua, L.; Qian, D.; Shi, D.; Li, H.: Effects of axial rolls motions on radial-axial rolling process for large-scale alloy steel ring with 3D coupled thermo-mechanical FEA. Int. J. Mech. Sci. 59, 1–7 (2012)CrossRef
11.
Zurück zum Zitat Xie, C.; Dong, X.; Li, S.; Huang, S.: Rigid–viscoplastic dynamic explicit FEA of the ring rolling process. J. Mach. Tools Manuf. 40, 81–93 (2000)CrossRef Xie, C.; Dong, X.; Li, S.; Huang, S.: Rigid–viscoplastic dynamic explicit FEA of the ring rolling process. J. Mach. Tools Manuf. 40, 81–93 (2000)CrossRef
12.
Zurück zum Zitat Guo, L.; Yang, H.: Towards a steady forming condition for radial-axial ring rolling. Int. J. Mech. Sci. 53, 286–299 (2011)CrossRef Guo, L.; Yang, H.: Towards a steady forming condition for radial-axial ring rolling. Int. J. Mech. Sci. 53, 286–299 (2011)CrossRef
13.
Zurück zum Zitat Lee, K.H.; Ko, D.C.; Kim, D.H.; Lee, S.B.; Sung, N.M.; Kim, B.M.: Control method for centering rolls in radial-axial ring rolling process. Int. J. Precis. Eng. Manuf. 15, 535–544 (2014)CrossRef Lee, K.H.; Ko, D.C.; Kim, D.H.; Lee, S.B.; Sung, N.M.; Kim, B.M.: Control method for centering rolls in radial-axial ring rolling process. Int. J. Precis. Eng. Manuf. 15, 535–544 (2014)CrossRef
14.
Zurück zum Zitat Wang, X.; Hua, L.; Han, X.; Wang, X.; Wang, D.; Liu, Y.: Numerical simulation and experimental study on geometry variations and process control method of vertical hot ring rolling. J. Adv. Manuf. Technol. 73, 389–398 (2014)CrossRef Wang, X.; Hua, L.; Han, X.; Wang, X.; Wang, D.; Liu, Y.: Numerical simulation and experimental study on geometry variations and process control method of vertical hot ring rolling. J. Adv. Manuf. Technol. 73, 389–398 (2014)CrossRef
15.
Zurück zum Zitat Lee, K.H.; Kim, B.M.: Advanced feasible forming condition for reducing ring spreads in radial-axial ring rolling. Int. J. Mech. Sci. 76, 21–32 (2013)CrossRef Lee, K.H.; Kim, B.M.: Advanced feasible forming condition for reducing ring spreads in radial-axial ring rolling. Int. J. Mech. Sci. 76, 21–32 (2013)CrossRef
16.
Zurück zum Zitat Arthington, M.R.; Cleaver, C.J.; Huang, J.; Duncan, S.R.: Curvature control in radial-axial ring rolling. IFAC Pap. OnLine 49, 244–249 (2016)CrossRef Arthington, M.R.; Cleaver, C.J.; Huang, J.; Duncan, S.R.: Curvature control in radial-axial ring rolling. IFAC Pap. OnLine 49, 244–249 (2016)CrossRef
17.
Zurück zum Zitat Cleaver, C.J.; Arthington, M.R.; Mortazavi, S.; Allwood, J.M.: Ring rolling with variable wall thickness. CIRP Ann. Manuf. Technol. 65, 281–284 (2016)CrossRef Cleaver, C.J.; Arthington, M.R.; Mortazavi, S.; Allwood, J.M.: Ring rolling with variable wall thickness. CIRP Ann. Manuf. Technol. 65, 281–284 (2016)CrossRef
18.
Zurück zum Zitat Allwood, J.M.; Tekkaya, A.E.; Stanistreet, T.F.: The development of ring rolling technology. Steel Res. Int. 76, 111–120 (2005)CrossRef Allwood, J.M.; Tekkaya, A.E.; Stanistreet, T.F.: The development of ring rolling technology. Steel Res. Int. 76, 111–120 (2005)CrossRef
19.
Zurück zum Zitat Guo, L.; Yang, H.: Towards a steady forming condition for radial—axial ring rolling. Int. J. Mech. Sci. 53, 286–299 (2011)CrossRef Guo, L.; Yang, H.: Towards a steady forming condition for radial—axial ring rolling. Int. J. Mech. Sci. 53, 286–299 (2011)CrossRef
20.
Zurück zum Zitat Tian, L.; Luo, Y.; Mao, H.J.; Hua, L.: A hybrid of theory and numerical simulation research for virtual rolling of double-groove ball rings. Int. J. Adv. Manuf. Technol. 69, 1–13 (2013)CrossRef Tian, L.; Luo, Y.; Mao, H.J.; Hua, L.: A hybrid of theory and numerical simulation research for virtual rolling of double-groove ball rings. Int. J. Adv. Manuf. Technol. 69, 1–13 (2013)CrossRef
21.
Zurück zum Zitat Hua, L.; Deng, J.; Qian, D.; Ma, Q.: Using upper bound solution to analyze force parameters of three-roll cross rolling of rings with small hole and deep groove. Int. J. Adv. Manuf. Technol. 76, 353–366 (2015)CrossRef Hua, L.; Deng, J.; Qian, D.; Ma, Q.: Using upper bound solution to analyze force parameters of three-roll cross rolling of rings with small hole and deep groove. Int. J. Adv. Manuf. Technol. 76, 353–366 (2015)CrossRef
22.
Zurück zum Zitat Baines, K.: Lead as a model material to simulate mandrel rolling of hot steel tube. In: Journal of Materials Processing Technology, pp. 422–428. Elsevier (2001) Baines, K.: Lead as a model material to simulate mandrel rolling of hot steel tube. In: Journal of Materials Processing Technology, pp. 422–428. Elsevier (2001)
23.
Zurück zum Zitat Xu, W.; Zhou, X.; Long, J.; Wang, Q.; Yang, X.: Feeding interval design considering multiconstraints in flat ring rolling process. Int. J. Adv. Manuf. Technol. 81, 219–229 (2015)CrossRef Xu, W.; Zhou, X.; Long, J.; Wang, Q.; Yang, X.: Feeding interval design considering multiconstraints in flat ring rolling process. Int. J. Adv. Manuf. Technol. 81, 219–229 (2015)CrossRef
24.
Zurück zum Zitat Çolak, B.; Kurgan, N.: An experimental investigation into roughness transfer in skin-pass rolling of steel strips. Int. J. Adv. Manuf. Technol. 96, 3321–3330 (2018)CrossRef Çolak, B.; Kurgan, N.: An experimental investigation into roughness transfer in skin-pass rolling of steel strips. Int. J. Adv. Manuf. Technol. 96, 3321–3330 (2018)CrossRef
25.
Zurück zum Zitat Hua, L.; Qian, D.S.; Pan, L.B.: Analysis of plastic penetration in process of groove ball-section ring rolling. J. Mech. Sci. Technol. 22, 1374–1382 (2008)CrossRef Hua, L.; Qian, D.S.; Pan, L.B.: Analysis of plastic penetration in process of groove ball-section ring rolling. J. Mech. Sci. Technol. 22, 1374–1382 (2008)CrossRef
26.
Zurück zum Zitat Lin, H.; Zhi, Z.Z.: The extremum parameters in ring rolling. J. Mater. Process. Tech. 69, 273–276 (1997)CrossRef Lin, H.; Zhi, Z.Z.: The extremum parameters in ring rolling. J. Mater. Process. Tech. 69, 273–276 (1997)CrossRef
Metadaten
Titel
Investigation of Ring Rolling Key Parameters for Decreasing Geometrical Ring Defects by 3D Finite Element and Experiments
verfasst von
Hosein Zayadi
Ali Parvizi
Hamid Reza Farahmand
Davood Rahmatabadi
Publikationsdatum
23.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 12/2021
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05849-4

Weitere Artikel der Ausgabe 12/2021

Arabian Journal for Science and Engineering 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.