Skip to main content
Erschienen in: Metal Science and Heat Treatment 11-12/2018

04.04.2018

Investigation of Triggering Stress for Martensitic Transformation in Titanium Alloy

verfasst von: Cong Li, Wei Li, Jian Chen, Yan Jie Ren, Jian Jun He, Cui Lan Wu

Erschienen in: Metal Science and Heat Treatment | Ausgabe 11-12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of the stability of β-phase (of the value of Moeq), of the thermal martensite, and of the rate of deformation on the triggering stress of martensitic transformation in alloy Ti – 10% V – 2% Fe – 3% Al is investigated. It is shown that the triggering stress increases with growth of Moeq in the presence of thermal martensite and with growth in the deformation rate from 10 – 4 to 10 – 1 sec – 1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. S. Kim, S. H. Lim, I. D. Yeo, and W. Y. Kim, “Stress-induced martensitic transformation of metastable β-titanium alloy,” Mater. Sci. Eng. A, 449, 322 – 325 (2007).CrossRef H. S. Kim, S. H. Lim, I. D. Yeo, and W. Y. Kim, “Stress-induced martensitic transformation of metastable β-titanium alloy,” Mater. Sci. Eng. A, 449, 322 – 325 (2007).CrossRef
2.
Zurück zum Zitat T. W. Duerig, G. T. Terlinde, and J. C. Williams, “Phase transformation and tensile properties of Ti – 10V – 2F – 3Al,” Metall. Trans. A, 11A, 1987 – 1998 (1980).CrossRef T. W. Duerig, G. T. Terlinde, and J. C. Williams, “Phase transformation and tensile properties of Ti – 10V – 2F – 3Al,” Metall. Trans. A, 11A, 1987 – 1998 (1980).CrossRef
3.
Zurück zum Zitat T. Grosdidier and M. J. Philippe, “Deformation induced martensite and superplasticity in a β-metastable titanium alloy,” Mater. Sci. Eng. A, 291, 218 – 223 (2000).CrossRef T. Grosdidier and M. J. Philippe, “Deformation induced martensite and superplasticity in a β-metastable titanium alloy,” Mater. Sci. Eng. A, 291, 218 – 223 (2000).CrossRef
4.
Zurück zum Zitat F. Hideki, “Strengthening of α + β titanium alloys by thermomechanical processing,” Mater. Sci. Eng. A, 243, 103 – 108 (1998).CrossRef F. Hideki, “Strengthening of α + β titanium alloys by thermomechanical processing,” Mater. Sci. Eng. A, 243, 103 – 108 (1998).CrossRef
5.
Zurück zum Zitat R. Mythili, V. T. Paul, S. Saroja, et al., “Study of transformation behavior in a Ti – 4.4 Ta – 1.9 Ni alloy,” Mater. Sci. Eng. A, 39, 299 – 312 (2005).CrossRef R. Mythili, V. T. Paul, S. Saroja, et al., “Study of transformation behavior in a Ti – 4.4 Ta – 1.9 Ni alloy,” Mater. Sci. Eng. A, 39, 299 – 312 (2005).CrossRef
6.
Zurück zum Zitat S. Neelakantan, D. S. Martin, P. E. J. Rivera-Diaz-del-Castillo, and S. van der Zwaag, “Plasticity induced transformation in a metastable β Ti-1023 alloy by controlled heat treatments,” Mater. Sci. Technol., 25, 1351 – 1358 (2009).CrossRef S. Neelakantan, D. S. Martin, P. E. J. Rivera-Diaz-del-Castillo, and S. van der Zwaag, “Plasticity induced transformation in a metastable β Ti-1023 alloy by controlled heat treatments,” Mater. Sci. Technol., 25, 1351 – 1358 (2009).CrossRef
7.
Zurück zum Zitat Z. Wyatt and S. Ankem, “The effect of metastability on room temperature deformation behavior of β and α + β titanium alloys,” J. Mater. Sci., 45, 5022 – 5031 (2010).CrossRef Z. Wyatt and S. Ankem, “The effect of metastability on room temperature deformation behavior of β and α + β titanium alloys,” J. Mater. Sci., 45, 5022 – 5031 (2010).CrossRef
8.
Zurück zum Zitat A. Paradkar, S. V. Kamat, A. K. Gogia, and B. P. Kashyap, “Effect Al and Nb on the trigger stress for stress-induced martensitic transformation during tensile loading in Ti – Al – Nb alloys,” Mater. Sci. Eng. A, 487, 14 – 19 (2008).CrossRef A. Paradkar, S. V. Kamat, A. K. Gogia, and B. P. Kashyap, “Effect Al and Nb on the trigger stress for stress-induced martensitic transformation during tensile loading in Ti – Al – Nb alloys,” Mater. Sci. Eng. A, 487, 14 – 19 (2008).CrossRef
9.
Zurück zum Zitat C. Ouchi, H. Fukai, and K. Hasegawa, “Microstructural characteristics and unique properties obtained by solution treating or aging in β-rich α + β titanium alloy,” Mater. Sci. Eng. A, 263, 132 – 136 (1999).CrossRef C. Ouchi, H. Fukai, and K. Hasegawa, “Microstructural characteristics and unique properties obtained by solution treating or aging in β-rich α + β titanium alloy,” Mater. Sci. Eng. A, 263, 132 – 136 (1999).CrossRef
10.
Zurück zum Zitat Q. Y. Sun, S. J. Song, R. H. Zhu, and H. C. Gu, “Toughening of titanium alloys by twinning and martensite transformation,” J. Mater. Sci., 37, 2543 – 2547 (2002).CrossRef Q. Y. Sun, S. J. Song, R. H. Zhu, and H. C. Gu, “Toughening of titanium alloys by twinning and martensite transformation,” J. Mater. Sci., 37, 2543 – 2547 (2002).CrossRef
11.
Zurück zum Zitat T. Grosdidier, Y. Combress, E. Gautier, and M. J. Philippe, “Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy,” Metall. Mater. Trans., 31A, 1095 – 1106 (2000).CrossRef T. Grosdidier, Y. Combress, E. Gautier, and M. J. Philippe, “Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy,” Metall. Mater. Trans., 31A, 1095 – 1106 (2000).CrossRef
12.
Zurück zum Zitat L. Zhang, T. Zhou, M. Aindow, et al., “Nucleation of stress-induced martensites in a Ti_Mo-based alloy,” J. Mater. Sci., 40, 2833 – 2836 (2005).CrossRef L. Zhang, T. Zhou, M. Aindow, et al., “Nucleation of stress-induced martensites in a Ti_Mo-based alloy,” J. Mater. Sci., 40, 2833 – 2836 (2005).CrossRef
13.
Zurück zum Zitat A. Paradkar, S. V. Kamat, A. K. Gogia, and B. P. Kashyap, “Effect of volume fraction of primary _2 on the trigger stress for stress-induced martensitic transformation in two-phase Ti – Al – Nb alloys,” Metall. Mater. Trans. A, 39A, 2086 – 2094 (2008).CrossRef A. Paradkar, S. V. Kamat, A. K. Gogia, and B. P. Kashyap, “Effect of volume fraction of primary _2 on the trigger stress for stress-induced martensitic transformation in two-phase Ti – Al – Nb alloys,” Metall. Mater. Trans. A, 39A, 2086 – 2094 (2008).CrossRef
14.
Zurück zum Zitat A. Paradkar, S. V. Kamat, A. K. Gogia, and B. P. Kashyap, “Trigger stress for stress-induced martensitic transformation during tensile deformation in Ti – Al – Nb alloys: Effect of grain size,” Metall. Mater. Trans. A, 39A, 551 – 558 (2008).CrossRef A. Paradkar, S. V. Kamat, A. K. Gogia, and B. P. Kashyap, “Trigger stress for stress-induced martensitic transformation during tensile deformation in Ti – Al – Nb alloys: Effect of grain size,” Metall. Mater. Trans. A, 39A, 551 – 558 (2008).CrossRef
15.
Zurück zum Zitat B. Appolaire, L. Héricher, and E. Gautier, “Modeling of phase transformation kinetics in Ti alloys – Isothermal treatments,” Acta Mater., 53, 3001 – 3011 (2005).CrossRef B. Appolaire, L. Héricher, and E. Gautier, “Modeling of phase transformation kinetics in Ti alloys – Isothermal treatments,” Acta Mater., 53, 3001 – 3011 (2005).CrossRef
16.
Zurück zum Zitat H. Ohyama and T. Nishimura, “Effects of alloying elements on deformation mode in Ti – V based titanium alloy system,” ISIJ Int., 31, 927 – 936 (1991).CrossRef H. Ohyama and T. Nishimura, “Effects of alloying elements on deformation mode in Ti – V based titanium alloy system,” ISIJ Int., 31, 927 – 936 (1991).CrossRef
17.
Zurück zum Zitat G. Lütering and J. C. Williams, Titanium, Ch. 7, “Beta Alloys,” 2nd Ed., Springer, Berlin (2007), pp. 283 – 337. G. Lütering and J. C. Williams, Titanium, Ch. 7, “Beta Alloys,” 2nd Ed., Springer, Berlin (2007), pp. 283 – 337.
18.
Zurück zum Zitat M. Gonzalez, J. Pana, J. M. Manero, et al., “Optimization of the Ti – 16.2Hf – 24.8Nb – 1Zr alloy by cold working,” J. Mater. Eng. Perform., 18, 506 – 510 (2009).CrossRef M. Gonzalez, J. Pana, J. M. Manero, et al., “Optimization of the Ti – 16.2Hf – 24.8Nb – 1Zr alloy by cold working,” J. Mater. Eng. Perform., 18, 506 – 510 (2009).CrossRef
19.
Zurück zum Zitat F. J. Gil and J. M. Guilemany, “Energetic evaluation for inducing the thermoelastic martensitic transformation by mechanical stress in Cu – Zn – Al single crystals,” Intermetallics, 7, 699 – 704 (1999).CrossRef F. J. Gil and J. M. Guilemany, “Energetic evaluation for inducing the thermoelastic martensitic transformation by mechanical stress in Cu – Zn – Al single crystals,” Intermetallics, 7, 699 – 704 (1999).CrossRef
20.
Zurück zum Zitat F. X. Gil, J. M. Manero, and J. A. Planell, “Relevant aspects in the clinical applications of NiTi shape memory alloys,” J. Mater. Sci., 7, 403 – 406 (1996). F. X. Gil, J. M. Manero, and J. A. Planell, “Relevant aspects in the clinical applications of NiTi shape memory alloys,” J. Mater. Sci., 7, 403 – 406 (1996).
21.
Zurück zum Zitat W. Bong, Z. Liu, Y. Gao, et al., “Microstructural evolution during aging of Ti – 10V – 2Fe – 3Al titanium alloy,” J. Univ. Sci. Technol. Beijing, 14, 335 – 340 (2007).CrossRef W. Bong, Z. Liu, Y. Gao, et al., “Microstructural evolution during aging of Ti – 10V – 2Fe – 3Al titanium alloy,” J. Univ. Sci. Technol. Beijing, 14, 335 – 340 (2007).CrossRef
22.
Zurück zum Zitat J. Talonen, P. Nenonen, G. Pape, and H. Hanninen, “Effect of stain rate on the strain-induced γ → α′ martensitic transformation and mechanical properties of austenitic stainless steels,” Metall. Mater. Trans. A, 36, 421 – 432 (2005).CrossRef J. Talonen, P. Nenonen, G. Pape, and H. Hanninen, “Effect of stain rate on the strain-induced γ → α′ martensitic transformation and mechanical properties of austenitic stainless steels,” Metall. Mater. Trans. A, 36, 421 – 432 (2005).CrossRef
23.
Zurück zum Zitat A. Paradkar and S. V. Kamat, “The effect of strain rate on trigger stress for stress-induced martensitic transformation and yield strength in Ti – 18Al – 8Nb alloy,” J. Alloys Compd., 496, 178 – 182 (2010).CrossRef A. Paradkar and S. V. Kamat, “The effect of strain rate on trigger stress for stress-induced martensitic transformation and yield strength in Ti – 18Al – 8Nb alloy,” J. Alloys Compd., 496, 178 – 182 (2010).CrossRef
24.
Zurück zum Zitat Y. Liu and H. Yang, “The concern of elasticity in stress-induced martensitic transformation in NiTi,” Mater. Sci. Eng. A, 260, 240 – 245 (1999).CrossRef Y. Liu and H. Yang, “The concern of elasticity in stress-induced martensitic transformation in NiTi,” Mater. Sci. Eng. A, 260, 240 – 245 (1999).CrossRef
25.
Zurück zum Zitat A. Bhattacharjee, S. Bhargava, V. K. Varma, et al., “Effect of β grain size on stress induced martensitic transformation in β solution treated Ti – 10V – 2Fe – 3Al alloy,” Scr. Mater., 53, 195 – 200 (2005).CrossRef A. Bhattacharjee, S. Bhargava, V. K. Varma, et al., “Effect of β grain size on stress induced martensitic transformation in β solution treated Ti – 10V – 2Fe – 3Al alloy,” Scr. Mater., 53, 195 – 200 (2005).CrossRef
26.
Zurück zum Zitat G. B. Olson and M. Cohen, “Interphase-boundary dislocations and the concept of coherency,” Acta Metall., 27, 1907 – 1918 (1979).CrossRef G. B. Olson and M. Cohen, “Interphase-boundary dislocations and the concept of coherency,” Acta Metall., 27, 1907 – 1918 (1979).CrossRef
27.
Zurück zum Zitat S. Nemat-Nasser, J. Y. Choi, W. G. Guo, J. B. Isaaca, “Very high strain-rate response of a NiTi shape-memory alloy,” Mech. Mater., 37, 287 – 298 (2005).CrossRef S. Nemat-Nasser, J. Y. Choi, W. G. Guo, J. B. Isaaca, “Very high strain-rate response of a NiTi shape-memory alloy,” Mech. Mater., 37, 287 – 298 (2005).CrossRef
28.
Zurück zum Zitat M. Grujicic, G. B. Olson, and W. S. Owen, “Kinetics of martensitic interface motion,” J. Phys., C4, 173 – 178 (1982). M. Grujicic, G. B. Olson, and W. S. Owen, “Kinetics of martensitic interface motion,” J. Phys., C4, 173 – 178 (1982).
29.
Zurück zum Zitat M. Grujicic, G. B. Olson, and W. S. Owen, “Mobility of martensitic interfaces,” Metall. Mater. Trans. A, 15, 1713 – 1722 (1985).CrossRef M. Grujicic, G. B. Olson, and W. S. Owen, “Mobility of martensitic interfaces,” Metall. Mater. Trans. A, 15, 1713 – 1722 (1985).CrossRef
30.
Zurück zum Zitat S. N. Nasser and J. Y. Choi, “Strain rate dependence of deformation mechanisms in a Ni – Ti – Cr shape-memory alloy,” Acta Mater., 53, 449 – 454 (2005).CrossRef S. N. Nasser and J. Y. Choi, “Strain rate dependence of deformation mechanisms in a Ni – Ti – Cr shape-memory alloy,” Acta Mater., 53, 449 – 454 (2005).CrossRef
Metadaten
Titel
Investigation of Triggering Stress for Martensitic Transformation in Titanium Alloy
verfasst von
Cong Li
Wei Li
Jian Chen
Yan Jie Ren
Jian Jun He
Cui Lan Wu
Publikationsdatum
04.04.2018
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 11-12/2018
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-018-0216-3

Weitere Artikel der Ausgabe 11-12/2018

Metal Science and Heat Treatment 11-12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.