Skip to main content
Erschienen in: Photonic Network Communications 1/2017

16.11.2016 | Original Paper

Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer

verfasst von: K. Venkatachalam, D. Sriram Kumar, S. Robinson

Erschienen in: Photonic Network Communications | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, eight-channel wavelength-division demultiplexer (WDDM) is proposed and designed using two-dimensional photonic crystal (2DPC) ring resonator whose corresponding functional parameters such as transmission efficiency, resonant wavelength, Q factor are investigated. The proposed structure consists of bus waveguide, dropping waveguide and square ring resonators. Eight different channels are dropped by altering the cavity size and radius of the defect rods. The plane-wave expansion (PWE) and finite-difference time-domain (FDTD) methods are employed to analyse the photonic band gap (PBG) of periodic and non-periodic structure and to arrive normalized transmission spectra, respectively. The resonant wavelengths of eight-channel demultiplexers are 1496.9, 1502.3, 1506.9, 1512.3, 1515.0, 1520.4, 1525.3 and 1530.6 nm. The average transmission efficiency, Q factor and spectral width of proposed demultiplexer are 81%, 825 and 1.8 nm, respectively. The mean channel spacing is about 4.2 nm. The size of the demultiplexer is small; hence, it can be utilized for photonic integrated circuits (PIC).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals-Molding the Flow of Light. Princeton University Press, Princeton (1995)MATH Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals-Molding the Flow of Light. Princeton University Press, Princeton (1995)MATH
2.
Zurück zum Zitat Robinson, S., Nakkeeran, R.: Investigation on two dimensional photonic crystal resonant cavity based bandpass filter. Optik 123, 451–457 (2011)CrossRef Robinson, S., Nakkeeran, R.: Investigation on two dimensional photonic crystal resonant cavity based bandpass filter. Optik 123, 451–457 (2011)CrossRef
3.
Zurück zum Zitat Taalbi, A., Bassou, G., Mahmoud, M.Y.: New design of channel drop filters based on photonic crystal ring resonators. Optik 124, 824–827 (2012)CrossRef Taalbi, A., Bassou, G., Mahmoud, M.Y.: New design of channel drop filters based on photonic crystal ring resonators. Optik 124, 824–827 (2012)CrossRef
4.
Zurück zum Zitat Li, L., Liu, G.Q.: Photonic crystal ring resonator channel drop filter. Optik 124, 2966–2968 (2012)CrossRef Li, L., Liu, G.Q.: Photonic crystal ring resonator channel drop filter. Optik 124, 2966–2968 (2012)CrossRef
5.
Zurück zum Zitat Mahmoud, M.Y., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012)CrossRef Mahmoud, M.Y., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012)CrossRef
6.
Zurück zum Zitat Niemi, T., Frandsen, L.H., Hede, K.K., Harpøth, A., Borel, P.I., Kristensen, M.: Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photonics Technol. Lett. 18, 226–228 (2006)CrossRef Niemi, T., Frandsen, L.H., Hede, K.K., Harpøth, A., Borel, P.I., Kristensen, M.: Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photonics Technol. Lett. 18, 226–228 (2006)CrossRef
7.
Zurück zum Zitat Chung, L.W., Lee, S.L.: Photonic crystal-based dual-band demultiplexers on silicon materials. Opt. Quant. Electron. 39, 677–686 (2007)CrossRef Chung, L.W., Lee, S.L.: Photonic crystal-based dual-band demultiplexers on silicon materials. Opt. Quant. Electron. 39, 677–686 (2007)CrossRef
8.
Zurück zum Zitat Sinha, R.K., Rawal, S.: Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer. Opt. Quant. Electron. 40, 603–613 (2008)CrossRef Sinha, R.K., Rawal, S.: Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer. Opt. Quant. Electron. 40, 603–613 (2008)CrossRef
9.
Zurück zum Zitat Rawal, S., Sinha, R.K.: Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. Opt. Commun. 282, 3889–3894 (2009)CrossRef Rawal, S., Sinha, R.K.: Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. Opt. Commun. 282, 3889–3894 (2009)CrossRef
10.
Zurück zum Zitat Tekeste, M.Y., Yarrison-Rice, J.M.: High efficiency photonic crystal based wavelength demultiplexer. Opt. Express 14, 7931–7942 (2006)CrossRef Tekeste, M.Y., Yarrison-Rice, J.M.: High efficiency photonic crystal based wavelength demultiplexer. Opt. Express 14, 7931–7942 (2006)CrossRef
11.
Zurück zum Zitat Rostami, A., Habibiyan, H.R., Nazari, F., Bahrami, A., Alipour, H.: A novel proposal for DWDM demultiplexer design using resonance cavity in photonic crystal structure. Int. Asia Commun. Photonics (ACP) 7630, 1–9 (2009) Rostami, A., Habibiyan, H.R., Nazari, F., Bahrami, A., Alipour, H.: A novel proposal for DWDM demultiplexer design using resonance cavity in photonic crystal structure. Int. Asia Commun. Photonics (ACP) 7630, 1–9 (2009)
12.
Zurück zum Zitat Rostami, A., Nazari, F., Banaei, H., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonic Nanostruct. Fundam. Appl. 8, 14–22 (2010)CrossRef Rostami, A., Nazari, F., Banaei, H., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonic Nanostruct. Fundam. Appl. 8, 14–22 (2010)CrossRef
13.
Zurück zum Zitat Rostami, A., Banaei, H.A., Nazari, F., Bahrami, A.: An ultra-compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Optik 122, 1481–1485 (2011)CrossRef Rostami, A., Banaei, H.A., Nazari, F., Bahrami, A.: An ultra-compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Optik 122, 1481–1485 (2011)CrossRef
14.
Zurück zum Zitat Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optic 124, 2639–2644 (2012) Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optic 124, 2639–2644 (2012)
15.
Zurück zum Zitat Zhang, X., Liao, Q., Yu, T., Liu, N., Huang, Y.: Novel Ultra-compact wavelength division demultiplexer based on photonic band gap. Opt. Commun. 285, 274–276 (2011)CrossRef Zhang, X., Liao, Q., Yu, T., Liu, N., Huang, Y.: Novel Ultra-compact wavelength division demultiplexer based on photonic band gap. Opt. Commun. 285, 274–276 (2011)CrossRef
16.
Zurück zum Zitat Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik 124, 5964–5967 (2013)CrossRefMATH Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik 124, 5964–5967 (2013)CrossRefMATH
17.
Zurück zum Zitat Bouamami, S., Naoum, R.: Compact WDM demultiplexer for seven channels in photonic crystal. Optik 124, 2373–2375 (2012)CrossRef Bouamami, S., Naoum, R.: Compact WDM demultiplexer for seven channels in photonic crystal. Optik 124, 2373–2375 (2012)CrossRef
18.
Zurück zum Zitat Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Effect of scattering rods in the frequency response of photonic crystal demultiplexers. J. Optoelectron. Adv. Mater. 17, 259–263 (2015)MATH Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Effect of scattering rods in the frequency response of photonic crystal demultiplexers. J. Optoelectron. Adv. Mater. 17, 259–263 (2015)MATH
19.
Zurück zum Zitat Gupta, N.D., Janyani, V.: Dense wavelength division demultiplexing using photonic crystal waveguides based on cavity resonance. Optik 125, 5833–5836 (2014)CrossRef Gupta, N.D., Janyani, V.: Dense wavelength division demultiplexing using photonic crystal waveguides based on cavity resonance. Optik 125, 5833–5836 (2014)CrossRef
20.
Zurück zum Zitat Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystal ring resonator. Phys. E 50, 97–101 (2013)CrossRef Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystal ring resonator. Phys. E 50, 97–101 (2013)CrossRef
21.
Zurück zum Zitat Djavid, M., Monifi, F., Ghaffari, A., Abirishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008)CrossRef Djavid, M., Monifi, F., Ghaffari, A., Abirishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008)CrossRef
22.
Zurück zum Zitat Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four port wavelength demultiplexer by photonic crystal ring resonators. Optik 124, 5923–5926 (2013)CrossRef Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four port wavelength demultiplexer by photonic crystal ring resonators. Optik 124, 5923–5926 (2013)CrossRef
23.
Zurück zum Zitat Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photonic Netw. Commun. 29, 146–150 (2015)CrossRefMATH Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photonic Netw. Commun. 29, 146–150 (2015)CrossRefMATH
24.
Zurück zum Zitat Ghorbanpour, H., Markouei, S.: 2-channel all optical demultiplexer based on photonic crystal ring resonator. Front. Optoelectron. 6(2), 224–227 (2013)CrossRef Ghorbanpour, H., Markouei, S.: 2-channel all optical demultiplexer based on photonic crystal ring resonator. Front. Optoelectron. 6(2), 224–227 (2013)CrossRef
25.
Zurück zum Zitat Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173–190 (2001)CrossRef Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173–190 (2001)CrossRef
26.
Zurück zum Zitat Taflove, A., Hegness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edn. Artech House, Boston (2000) Taflove, A., Hegness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edn. Artech House, Boston (2000)
Metadaten
Titel
Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer
verfasst von
K. Venkatachalam
D. Sriram Kumar
S. Robinson
Publikationsdatum
16.11.2016
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 1/2017
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-016-0675-7

Weitere Artikel der Ausgabe 1/2017

Photonic Network Communications 1/2017 Zur Ausgabe

Neuer Inhalt