Skip to main content
Erschienen in: Colloid and Polymer Science 2/2020

02.01.2020 | Original Contribution

Investigations on the compatibilization between poly(lactic-co-glycolic acid)/poly(trimethylene carbonate) blends and poly(lactide-co-trimethylene carbonate)

verfasst von: Jin Qi, Shaomin Feng, Yu Zhang, Hechun Chen, Chengdong Xiong

Erschienen in: Colloid and Polymer Science | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the effect of different contents of poly(lactide-co-trimethylene carbonate) (PLT) as a compatibilizer on the blends of PLGA and PTMC has been investigated. The PLGA/PTMC/PLT ternary composites were prepared by using the solution co-precipitation method. The PLT component played a very important role in determining internal structure, and thermal, mechanical, and hydrophilic properties of whole composites. Our results showed that the PLT addition made the glass transition temperature of PLGA and PTMC close to that of each other and improved their compatibility. When the amount of PLT addition was 3 wt%, the two-phase interface of the composite fracture surface almost disappeared, which further demonstrated that PLT could improve the interfacial compatibility of PLGA and PTMC. The tensile strength and tensile modulus and the elongation of the PLGA/PTMC/PLT composites were 54.01 ± 2.1 MPa, 1.11 ± 0.05 GPa, 49.29 ± 3.6% respectively after the 3 wt% random copolymers was added. The results of XRD and POM showed that the crystalline morphology of the composites was spherocrystal, where the second crystalline phase was not found. Interestingly, PLT reduced the hydrophilicity of PLGA/PTMC/PLT composites. In conclusion, PLGA/PTMC/PLT composites are expected to have a fascinating role in the field of bone defect repair.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pappalardo D, Mathisen T, Finne-Wistrand A (2019) Biocompatibility of resorbable polymers: a historical perspective and framework for the future. Biomacromolecules 20:1465–1477CrossRef Pappalardo D, Mathisen T, Finne-Wistrand A (2019) Biocompatibility of resorbable polymers: a historical perspective and framework for the future. Biomacromolecules 20:1465–1477CrossRef
2.
Zurück zum Zitat Castillo-Dali G, Velazquez-Cayon R, Angeles Serrera-Figallo M, Rodriguez-Gonzalez-Elipe A, Gutierrez-Perez J-L, Torres-Lagares D (2015) Importance of poly(lactic-co-glycolic acid) in scaffolds for guided bone regeneration: a focused review. J Oral Implantol 41:E152–E157CrossRef Castillo-Dali G, Velazquez-Cayon R, Angeles Serrera-Figallo M, Rodriguez-Gonzalez-Elipe A, Gutierrez-Perez J-L, Torres-Lagares D (2015) Importance of poly(lactic-co-glycolic acid) in scaffolds for guided bone regeneration: a focused review. J Oral Implantol 41:E152–E157CrossRef
3.
Zurück zum Zitat Salonius E, Muhonen V, Lehto K, Jarvinen E, Pyhalto T et al (2019) Gas-foamed poly(lactide-co-glycolide) and poly(lactide-co-glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects. J Tissue Eng Regen Med 13:406–415CrossRef Salonius E, Muhonen V, Lehto K, Jarvinen E, Pyhalto T et al (2019) Gas-foamed poly(lactide-co-glycolide) and poly(lactide-co-glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects. J Tissue Eng Regen Med 13:406–415CrossRef
4.
Zurück zum Zitat Jeong SI, Kim SY, Cho SK, Chong MS (2007) Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 28:1115–1122CrossRef Jeong SI, Kim SY, Cho SK, Chong MS (2007) Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 28:1115–1122CrossRef
5.
Zurück zum Zitat Liu Q, Jiang L, Shi R, Zhang L (2012) Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers—a review. Prog Polym Sci 37:715–765CrossRef Liu Q, Jiang L, Shi R, Zhang L (2012) Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers—a review. Prog Polym Sci 37:715–765CrossRef
7.
Zurück zum Zitat Martina M, Hutmacher DW (2007) Biodegradable polymers applied in tissue engineering research: a review. Polym Int 56:145–157CrossRef Martina M, Hutmacher DW (2007) Biodegradable polymers applied in tissue engineering research: a review. Polym Int 56:145–157CrossRef
8.
Zurück zum Zitat Fukushima K (2016) Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomater Sci 4:9–24CrossRef Fukushima K (2016) Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomater Sci 4:9–24CrossRef
9.
Zurück zum Zitat Vilay V, Mariatti M, Ahmad Z, Pasomsouk K, Todo M (2009) Characterization of the mechanical and thermal properties and morphological behavior of biodegradable poly(L-lactide)/poly(ε-caprolactone) and poly(L-lactide)/poly(butylene succinate-co-L-lactate) polymeric blends. J Appl Polym Sci 114:1784–1792CrossRef Vilay V, Mariatti M, Ahmad Z, Pasomsouk K, Todo M (2009) Characterization of the mechanical and thermal properties and morphological behavior of biodegradable poly(L-lactide)/poly(ε-caprolactone) and poly(L-lactide)/poly(butylene succinate-co-L-lactate) polymeric blends. J Appl Polym Sci 114:1784–1792CrossRef
10.
Zurück zum Zitat Zhu Y, Wang Z, Li L et al (2017) In vitro degradation behavior of a hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair. J Mater Chem B 5:8695–8706CrossRef Zhu Y, Wang Z, Li L et al (2017) In vitro degradation behavior of a hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair. J Mater Chem B 5:8695–8706CrossRef
11.
Zurück zum Zitat Chou SF, Woodrow KA (2017) Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J Mech Behav Biomed Mater 65:724–733CrossRef Chou SF, Woodrow KA (2017) Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J Mech Behav Biomed Mater 65:724–733CrossRef
12.
Zurück zum Zitat Han Y, Jin X, Yang J et al (2012) Totally bioresorbable composites prepared from poly(l-lactide)-co-(trimethylene carbonate) copolymers and poly(l-lactide)-co-(glycolide) fibers as cardiovascular stent material. Polym Eng Sci 52:741–750CrossRef Han Y, Jin X, Yang J et al (2012) Totally bioresorbable composites prepared from poly(l-lactide)-co-(trimethylene carbonate) copolymers and poly(l-lactide)-co-(glycolide) fibers as cardiovascular stent material. Polym Eng Sci 52:741–750CrossRef
13.
Zurück zum Zitat Zhang F, Song Q, Huang X, Li F, Wang K, Tang Y, Hou C, Shen H (2016) A novel high mechanical property PLGA composite matrix loaded with nanodiamond-phospholipid compound for bone tissue engineering. ACS Appl Mater Interfaces 8:1087–1097CrossRef Zhang F, Song Q, Huang X, Li F, Wang K, Tang Y, Hou C, Shen H (2016) A novel high mechanical property PLGA composite matrix loaded with nanodiamond-phospholipid compound for bone tissue engineering. ACS Appl Mater Interfaces 8:1087–1097CrossRef
14.
Zurück zum Zitat Fernandes KR, Magri AMP, Kido HW et al (2017) Biosilicate/PLGA osteogenic effects modulated by laser therapy: in vitro and in vivo studies. J Photochem Photobiol B Biol 173:258–265CrossRef Fernandes KR, Magri AMP, Kido HW et al (2017) Biosilicate/PLGA osteogenic effects modulated by laser therapy: in vitro and in vivo studies. J Photochem Photobiol B Biol 173:258–265CrossRef
15.
Zurück zum Zitat Li X, Zhang S, Zhang X et al (2017) Biocompatibility and physicochemical characteristics of poly(epsilon-caprolactone)/poly(lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Mater Des 114:149–160CrossRef Li X, Zhang S, Zhang X et al (2017) Biocompatibility and physicochemical characteristics of poly(epsilon-caprolactone)/poly(lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Mater Des 114:149–160CrossRef
16.
Zurück zum Zitat Guo J, Ning C, Liu X (2018) Bioactive calcium phosphate silicate ceramic surface-modified PLGA for tendon-to-bone healing. Colloids Surf B Biointerfaces 164:388–395CrossRef Guo J, Ning C, Liu X (2018) Bioactive calcium phosphate silicate ceramic surface-modified PLGA for tendon-to-bone healing. Colloids Surf B Biointerfaces 164:388–395CrossRef
17.
Zurück zum Zitat Liang X, Duan P, Gao J et al (2018) Bilayered PLGA/PLGA-HAp composite scaffold for osteochondral tissue engineering and tissue regeneration. Acs Biomater Sci Eng 4:3506–3521CrossRef Liang X, Duan P, Gao J et al (2018) Bilayered PLGA/PLGA-HAp composite scaffold for osteochondral tissue engineering and tissue regeneration. Acs Biomater Sci Eng 4:3506–3521CrossRef
18.
Zurück zum Zitat Jiang L, Ma B, Li Y, Ding H, Su S, Xiong C (2019) Effect of bamboo fiber on the degradation behavior and in vitro cytocompatibility of the nano-hydroxyapatite/poly(lactide-co-glycolide) (n-HA/PLGA) composite. Cellulose 26:1099–1110CrossRef Jiang L, Ma B, Li Y, Ding H, Su S, Xiong C (2019) Effect of bamboo fiber on the degradation behavior and in vitro cytocompatibility of the nano-hydroxyapatite/poly(lactide-co-glycolide) (n-HA/PLGA) composite. Cellulose 26:1099–1110CrossRef
19.
Zurück zum Zitat Wu LB, Ding JD (2014) In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25:5821–5830CrossRef Wu LB, Ding JD (2014) In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25:5821–5830CrossRef
20.
Zurück zum Zitat Luo YR, Zhang L, Chen C et al (2018) The delayed degradation mechanism and mechanical properties of beta-TCP filler in poly(lactide-co-glycolide)/beta-tricalcium phosphate composite suture anchors during short-time degradation in vivo. J Mater Res 33:4278–4286CrossRef Luo YR, Zhang L, Chen C et al (2018) The delayed degradation mechanism and mechanical properties of beta-TCP filler in poly(lactide-co-glycolide)/beta-tricalcium phosphate composite suture anchors during short-time degradation in vivo. J Mater Res 33:4278–4286CrossRef
21.
Zurück zum Zitat van Leeuwen AC, Huddleston Slater JJR, Gielkens PFM, de Jong JR, Grijpma DW, Bos RR (2012) Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes. Acta Biomater 8:1422–1429CrossRef van Leeuwen AC, Huddleston Slater JJR, Gielkens PFM, de Jong JR, Grijpma DW, Bos RR (2012) Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes. Acta Biomater 8:1422–1429CrossRef
22.
Zurück zum Zitat Zhang Z, Zou S, Vancso GJ, Grijpma DW, Feijen J (2005) Enzymatic surface erosion of poly(trimethylene carbonate) films studied by atomic force microscopy. Biomacromolecules 6:3404–3409CrossRef Zhang Z, Zou S, Vancso GJ, Grijpma DW, Feijen J (2005) Enzymatic surface erosion of poly(trimethylene carbonate) films studied by atomic force microscopy. Biomacromolecules 6:3404–3409CrossRef
23.
Zurück zum Zitat Guillaume O, Geven MA, Sprecher CM et al (2017) Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater 54:386–398CrossRef Guillaume O, Geven MA, Sprecher CM et al (2017) Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater 54:386–398CrossRef
24.
Zurück zum Zitat Zhang X, Geven MA, Wang X et al (2018) A drug eluting poly(trimethylene carbonate)/poly(lactic acid)-reinforced nanocomposite for the functional delivery of osteogenic molecules. Int J Nanomedicine 13:5701–5718CrossRef Zhang X, Geven MA, Wang X et al (2018) A drug eluting poly(trimethylene carbonate)/poly(lactic acid)-reinforced nanocomposite for the functional delivery of osteogenic molecules. Int J Nanomedicine 13:5701–5718CrossRef
25.
Zurück zum Zitat Hiroharu A, Yoshikazu T et al (2014) Surface control of hydrophilicity and degradability with block copolymers composed of lactide and cyclic carbonate bearing methoxyethoxyl groups. Polymer 55:3591–3598CrossRef Hiroharu A, Yoshikazu T et al (2014) Surface control of hydrophilicity and degradability with block copolymers composed of lactide and cyclic carbonate bearing methoxyethoxyl groups. Polymer 55:3591–3598CrossRef
26.
Zurück zum Zitat Nalinthip C, Hiroharu A (2018) Preparation of thermosensitive biodegradable hydrogel using poly(5-[2-{2-(2-methoxyethoxy)ethyoxy}-ethoxyme thyl]-5-methyl-1,3-dioxa-2-one) derivatives. Materialia 5:100178 Nalinthip C, Hiroharu A (2018) Preparation of thermosensitive biodegradable hydrogel using poly(5-[2-{2-(2-methoxyethoxy)ethyoxy}-ethoxyme thyl]-5-methyl-1,3-dioxa-2-one) derivatives. Materialia 5:100178
27.
Zurück zum Zitat Bai H, Huang C, Xiu H, Gao Y, Zhang Q, Fu Q (2013) Toughening of poly(L-lactide) with poly(epsilon-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer 54:5257–5266CrossRef Bai H, Huang C, Xiu H, Gao Y, Zhang Q, Fu Q (2013) Toughening of poly(L-lactide) with poly(epsilon-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer 54:5257–5266CrossRef
28.
Zurück zum Zitat Moon HK, Choi YS, Lee JK, Ha CS, Lee WK, Gardella JA Jr (2009) Miscibility and hydrolytic behavior of poly(trimethylene carbonate) and poly(L-lactide) and their blends in monolayers at the air/water interface. Langmuir 25:4478–4483CrossRef Moon HK, Choi YS, Lee JK, Ha CS, Lee WK, Gardella JA Jr (2009) Miscibility and hydrolytic behavior of poly(trimethylene carbonate) and poly(L-lactide) and their blends in monolayers at the air/water interface. Langmuir 25:4478–4483CrossRef
30.
Zurück zum Zitat Todo M, Park SD, Takayama T, Arakawa K (2007) Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. Eng Fract Mech 74:1872–1883CrossRef Todo M, Park SD, Takayama T, Arakawa K (2007) Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. Eng Fract Mech 74:1872–1883CrossRef
31.
Zurück zum Zitat Lin W, Qu JP (2019) Enhancing impact toughness of renewable poly(lactic acid)/thermoplastic polyurethane blends via constructing cocontinuous-like phase morphology assisted by ethylene-methyl acrylate-glycidyl methacrylate copolymer. Ind Eng Chem Res 58:10894–10907CrossRef Lin W, Qu JP (2019) Enhancing impact toughness of renewable poly(lactic acid)/thermoplastic polyurethane blends via constructing cocontinuous-like phase morphology assisted by ethylene-methyl acrylate-glycidyl methacrylate copolymer. Ind Eng Chem Res 58:10894–10907CrossRef
32.
Zurück zum Zitat Rathi SR, Coughlin EB, Hsu SL et al (2012) Effect of midblock on the morphology and properties of blends of ABA triblock copolymers of PDLA-mid-block-PDLA with PLLA. Polymer 53:3008–3016CrossRef Rathi SR, Coughlin EB, Hsu SL et al (2012) Effect of midblock on the morphology and properties of blends of ABA triblock copolymers of PDLA-mid-block-PDLA with PLLA. Polymer 53:3008–3016CrossRef
33.
Zurück zum Zitat Oyama HT (2009) Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer. Polymer 50:747–751CrossRef Oyama HT (2009) Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer. Polymer 50:747–751CrossRef
34.
Zurück zum Zitat Phetwarotai W, Phusunti N, Aht-Ong D (2019) Preparation and characteristics of poly(butylene adipate-co-terephthalate)/polylactide blend films via synergistic efficiency of plasticization and compatibilization. Chin J Polym Sci 37:68–78CrossRef Phetwarotai W, Phusunti N, Aht-Ong D (2019) Preparation and characteristics of poly(butylene adipate-co-terephthalate)/polylactide blend films via synergistic efficiency of plasticization and compatibilization. Chin J Polym Sci 37:68–78CrossRef
35.
Zurück zum Zitat Kang H, Qiao B, Wang R et al (2013) Employing a novel bioelastomer to toughen polylactide. Polymer 54:2450–2458CrossRef Kang H, Qiao B, Wang R et al (2013) Employing a novel bioelastomer to toughen polylactide. Polymer 54:2450–2458CrossRef
36.
Zurück zum Zitat Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4:3091–3101CrossRef Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4:3091–3101CrossRef
37.
Zurück zum Zitat Huang S, Sun H, Sun J et al (2014) Biodegradable tough blends of poly(L-lactide) and poly(castor oil)-poly(L-lactide) copolymer. Mater Lett 133:87–90CrossRef Huang S, Sun H, Sun J et al (2014) Biodegradable tough blends of poly(L-lactide) and poly(castor oil)-poly(L-lactide) copolymer. Mater Lett 133:87–90CrossRef
38.
Zurück zum Zitat Jia Z, Zhang K, Tan J et al (2009) Crystallization behavior and mechanical properties of crosslinked plasticized poly(L-lactic acid). J Appl Polym Sci 111:1530–1539CrossRef Jia Z, Zhang K, Tan J et al (2009) Crystallization behavior and mechanical properties of crosslinked plasticized poly(L-lactic acid). J Appl Polym Sci 111:1530–1539CrossRef
39.
Zurück zum Zitat Na YH, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Compatibilization effect of poly(epsilon-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(epsilon-caprolactone) blends. Biomacromolecules 3:1179–1186CrossRef Na YH, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Compatibilization effect of poly(epsilon-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(epsilon-caprolactone) blends. Biomacromolecules 3:1179–1186CrossRef
Metadaten
Titel
Investigations on the compatibilization between poly(lactic-co-glycolic acid)/poly(trimethylene carbonate) blends and poly(lactide-co-trimethylene carbonate)
verfasst von
Jin Qi
Shaomin Feng
Yu Zhang
Hechun Chen
Chengdong Xiong
Publikationsdatum
02.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 2/2020
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-019-04595-2

Weitere Artikel der Ausgabe 2/2020

Colloid and Polymer Science 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.