Skip to main content
Erschienen in: Journal of Nanoparticle Research 8/2012

01.08.2012 | Review

Ionic transport in nanocapillary membrane systems

verfasst von: Vikhram V. Swaminathan, Larry R. Gibson II, Marie Pinti, Shaurya Prakash, Paul W. Bohn, Mark A. Shannon

Erschienen in: Journal of Nanoparticle Research | Ausgabe 8/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Species transport in nanocapillary membrane systems has engaged considerable research interest, presenting technological challenges and opportunities, while exhibiting significant deviations from conventionally well understood bulk behavior in microfluidics. Nonlinear electrokinetic effects and surface charge of materials, along with geometric considerations, dominate the phenomena in structures with characteristic lengths below 100 nm. Consequently, these methods have enabled 3D micro- and nanofluidic hybrid systems with high-chemical selectivity for precise manipulation of mass-limited quantities of analytes. In this review, we present an overview of both fundamental developments and applications of these unique nanocapillary systems, identifying forces that govern ion and particle transport, and surveying applications in separation, sensing, mixing, and chemical reactions. All of these developments are oriented toward adding important functionality in micro-total analysis systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adiga SP, Jin CM, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009) Nanoporous membranes for medical and biological applications. WIREs Nanomed Nanobiotechnol 1:568–581CrossRef Adiga SP, Jin CM, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009) Nanoporous membranes for medical and biological applications. WIREs Nanomed Nanobiotechnol 1:568–581CrossRef
Zurück zum Zitat Agerbaek M, Keiding K (1995) Streaming potential during cake filtration of slightly compressible particles. J Colloid Interface Sci 169:255–342CrossRef Agerbaek M, Keiding K (1995) Streaming potential during cake filtration of slightly compressible particles. J Colloid Interface Sci 169:255–342CrossRef
Zurück zum Zitat Ali M, Tahir MN, Siwy ZS, Neumann R, Tremel W, Ensinger W (2011) Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels. Anal Chem 83:1673–1680CrossRef Ali M, Tahir MN, Siwy ZS, Neumann R, Tremel W, Ensinger W (2011) Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels. Anal Chem 83:1673–1680CrossRef
Zurück zum Zitat Bohn PW (2009) Nanoscale control and manipulation of molecular transport in chemical analysis. Annu Rev Anal Chem 2:279–296CrossRef Bohn PW (2009) Nanoscale control and manipulation of molecular transport in chemical analysis. Annu Rev Anal Chem 2:279–296CrossRef
Zurück zum Zitat Boukany PE, Morss A, Liao W, Henslee B, Jung H, Zhang X, Yu B, Wang X, Wu Y, Li L, Gao K, Hu X, Zhao X, Hemminger O, Lu W, Lafyatis GP, Lee LJ (2011) Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat Nanotechnol 6:747–754CrossRef Boukany PE, Morss A, Liao W, Henslee B, Jung H, Zhang X, Yu B, Wang X, Wu Y, Li L, Gao K, Hu X, Zhao X, Hemminger O, Lu W, Lafyatis GP, Lee LJ (2011) Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat Nanotechnol 6:747–754CrossRef
Zurück zum Zitat Bowski L, Saini R, Ryu D, Vieth W (1971) Kinetic modeling of hydrolysis of sucrose by invertase. Biotechnol Bioeng 13:641–656CrossRef Bowski L, Saini R, Ryu D, Vieth W (1971) Kinetic modeling of hydrolysis of sucrose by invertase. Biotechnol Bioeng 13:641–656CrossRef
Zurück zum Zitat Burgmayer P, Murray RW (1982) An ion gate membrane: electrochemical control of ion permeability through a membrane with an embedded electrode. J Am Chem Soc 4:6139–6140CrossRef Burgmayer P, Murray RW (1982) An ion gate membrane: electrochemical control of ion permeability through a membrane with an embedded electrode. J Am Chem Soc 4:6139–6140CrossRef
Zurück zum Zitat Burgreen D, Nakache F (1964) Electrokinetic flow in ultrafine capillary slits. J Phys Chem 68:1084–1091CrossRef Burgreen D, Nakache F (1964) Electrokinetic flow in ultrafine capillary slits. J Phys Chem 68:1084–1091CrossRef
Zurück zum Zitat Buyukserin F, Kohli P, Wirtz M, Martin C (2007) Electroactive nanotube membranes and redox-gating. Small 3:266–270CrossRef Buyukserin F, Kohli P, Wirtz M, Martin C (2007) Electroactive nanotube membranes and redox-gating. Small 3:266–270CrossRef
Zurück zum Zitat Cannon DM Jr, Kuo T-C, Bohn PW, Sweedler JV (2003) Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. Anal Chem 75:2224–2230CrossRef Cannon DM Jr, Kuo T-C, Bohn PW, Sweedler JV (2003) Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. Anal Chem 75:2224–2230CrossRef
Zurück zum Zitat Cervera J, Patricio R, Manzanares JA, Mafe S (2010) Incorporating ionic size in the transport equations for charged nanopores. Microfluid Nanofluid 9:41–53CrossRef Cervera J, Patricio R, Manzanares JA, Mafe S (2010) Incorporating ionic size in the transport equations for charged nanopores. Microfluid Nanofluid 9:41–53CrossRef
Zurück zum Zitat Chang I-H, Tulock JJ, Liu J, Cannon DM Jr, Bohn PW, Sweedler JV, Cropeck DM (2005) Miniaturized lead sensor based on lead-specific DNAzyme in a nanocapillary interconnected microfluidic device. Environ Sci Technol 39:3756–3761CrossRef Chang I-H, Tulock JJ, Liu J, Cannon DM Jr, Bohn PW, Sweedler JV, Cropeck DM (2005) Miniaturized lead sensor based on lead-specific DNAzyme in a nanocapillary interconnected microfluidic device. Environ Sci Technol 39:3756–3761CrossRef
Zurück zum Zitat Chatterjee AN, Cannon DM Jr, Gatimu EN, Sweedler JV, Aluru NR, Bohn PW (2005) Modeling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects. J Nanopart Res 7:507–516CrossRef Chatterjee AN, Cannon DM Jr, Gatimu EN, Sweedler JV, Aluru NR, Bohn PW (2005) Modeling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects. J Nanopart Res 7:507–516CrossRef
Zurück zum Zitat Chowdiah P, Wasan D, Gidaspow D (1983) On the interpretation of streaming potential data in nonaqueous media. Colloids Surf 7:291–299CrossRef Chowdiah P, Wasan D, Gidaspow D (1983) On the interpretation of streaming potential data in nonaqueous media. Colloids Surf 7:291–299CrossRef
Zurück zum Zitat Chun K-Y, Stroeve P (2002) Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir 18:4653–4658CrossRef Chun K-Y, Stroeve P (2002) Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir 18:4653–4658CrossRef
Zurück zum Zitat Chun K-Y, Mafe S, Ramirez P, Stroeve P (2006) Protein transport through gold-coated, charged nanopores: Effects of applied voltage. Chem Phys Lett 418:561–564CrossRef Chun K-Y, Mafe S, Ramirez P, Stroeve P (2006) Protein transport through gold-coated, charged nanopores: Effects of applied voltage. Chem Phys Lett 418:561–564CrossRef
Zurück zum Zitat Conlisk AT (2005) The Debye-Huckel approximation: Its use in describing electroosmotic flow in micro- and nanochannels. Eletrophoresis 26:1896–1912CrossRef Conlisk AT (2005) The Debye-Huckel approximation: Its use in describing electroosmotic flow in micro- and nanochannels. Eletrophoresis 26:1896–1912CrossRef
Zurück zum Zitat Conlisk AT (2012) Essentials of micro- and nanofluidics: with applications to the biological and chemical sciences. Cambridge University Press, Cambridge Conlisk AT (2012) Essentials of micro- and nanofluidics: with applications to the biological and chemical sciences. Cambridge University Press, Cambridge
Zurück zum Zitat Conlisk AT, McFerran J, Zheng Z, Hansford D (2002) Mass transfer and flow in electrically charged micro- and nano-channels. Anal Chem 74:2139–2150CrossRef Conlisk AT, McFerran J, Zheng Z, Hansford D (2002) Mass transfer and flow in electrically charged micro- and nano-channels. Anal Chem 74:2139–2150CrossRef
Zurück zum Zitat Conlisk AT, Kumar A, Rampersaud A (2007) Ionic and biomolecular transport in nanochannels. Nanoscale Microscale Thermophys Eng 11:177–199CrossRef Conlisk AT, Kumar A, Rampersaud A (2007) Ionic and biomolecular transport in nanochannels. Nanoscale Microscale Thermophys Eng 11:177–199CrossRef
Zurück zum Zitat Contento NM, Branagan SP, Bohn PW (2011) Electrolysis in nanochannels for in situ reagent generation in confined geometries. Lab Chip 11:3634–3641CrossRef Contento NM, Branagan SP, Bohn PW (2011) Electrolysis in nanochannels for in situ reagent generation in confined geometries. Lab Chip 11:3634–3641CrossRef
Zurück zum Zitat Daiguji H, Oka Y, Shirono K (2005) Nanofluidic diode and bipolar transistor. Nano Lett 5:2274–2280CrossRef Daiguji H, Oka Y, Shirono K (2005) Nanofluidic diode and bipolar transistor. Nano Lett 5:2274–2280CrossRef
Zurück zum Zitat Datta S, Conlisk AT, Kanani DM, Zydney AL, Fissell WH, Roy S (2010) Characterizing the surface charge of synthetic nanomembranes by the streaming potential method. J Colloid Interface Sci 348:85–95CrossRef Datta S, Conlisk AT, Kanani DM, Zydney AL, Fissell WH, Roy S (2010) Characterizing the surface charge of synthetic nanomembranes by the streaming potential method. J Colloid Interface Sci 348:85–95CrossRef
Zurück zum Zitat Dhathathreyan A (2011) Real-time monitoring of invertase activity immobilized in nanoporous aluminum oxide. J Phys Chem B 115:6678–6682CrossRef Dhathathreyan A (2011) Real-time monitoring of invertase activity immobilized in nanoporous aluminum oxide. J Phys Chem B 115:6678–6682CrossRef
Zurück zum Zitat Fa K, Tulock JJ, Sweedler JV, Bohn PW (2005) Profiling pH gradients across nanocapillary array membranes connecting microfluidic channels. J Am Chem Soc 127:13928–13933CrossRef Fa K, Tulock JJ, Sweedler JV, Bohn PW (2005) Profiling pH gradients across nanocapillary array membranes connecting microfluidic channels. J Am Chem Soc 127:13928–13933CrossRef
Zurück zum Zitat Fievet P, Szymczyk A, Aoubiza B, Pagetti J (2000) Evaluation of three methods for the characterisation of the membrane-solution interface: streaming potential, membrane potential and electrolyte conductivity inside pores. J Membr Sci 168:87–100CrossRef Fievet P, Szymczyk A, Aoubiza B, Pagetti J (2000) Evaluation of three methods for the characterisation of the membrane-solution interface: streaming potential, membrane potential and electrolyte conductivity inside pores. J Membr Sci 168:87–100CrossRef
Zurück zum Zitat Flachsbart BR, Wong K, Iannacone JM, Abante EN, Vlach RI, Rauchfuss PA, Bohn PW, Sweedler JV, Shannon MA (2006) Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6:667–674CrossRef Flachsbart BR, Wong K, Iannacone JM, Abante EN, Vlach RI, Rauchfuss PA, Bohn PW, Sweedler JV, Shannon MA (2006) Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6:667–674CrossRef
Zurück zum Zitat Gong M, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2008a) Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes. Electrophoresis 29:1237–1244CrossRef Gong M, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2008a) Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes. Electrophoresis 29:1237–1244CrossRef
Zurück zum Zitat Gong M, Kim BY, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2008b) An on-chip fluorogenic enzyme assay using a multilayer microchip interconnected with a nanocapillary array membrane. IEEE Sens J 8:601–607CrossRef Gong M, Kim BY, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2008b) An on-chip fluorogenic enzyme assay using a multilayer microchip interconnected with a nanocapillary array membrane. IEEE Sens J 8:601–607CrossRef
Zurück zum Zitat Han J, Fu J, Schoch RB (2008) Molecular sieving using nanofilters: past, present and future. Lab Chip 8:23–33CrossRef Han J, Fu J, Schoch RB (2008) Molecular sieving using nanofilters: past, present and future. Lab Chip 8:23–33CrossRef
Zurück zum Zitat He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg RS, Siwy ZS (2009) Tuning transport properties of nanofluidic devices with local charge inversion. J Am Chem Soc 131:5194–5202CrossRef He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg RS, Siwy ZS (2009) Tuning transport properties of nanofluidic devices with local charge inversion. J Am Chem Soc 131:5194–5202CrossRef
Zurück zum Zitat Huang S, Yin Y (2006) Transport and separation of small organic molecules through nanotubules. Anal Sci 22:1005–1009CrossRef Huang S, Yin Y (2006) Transport and separation of small organic molecules through nanotubules. Anal Sci 22:1005–1009CrossRef
Zurück zum Zitat Huisman IH, Pradanos P, Calvo JI, Hernandez A (2000) Electroviscous effects, streaming potential, and zeta potential in polycarbonate track-etched membranes. J Membr Sci 178:79–92CrossRef Huisman IH, Pradanos P, Calvo JI, Hernandez A (2000) Electroviscous effects, streaming potential, and zeta potential in polycarbonate track-etched membranes. J Membr Sci 178:79–92CrossRef
Zurück zum Zitat Hulteen JC, Jirage KB, Martin CR (1998) Introducing chemical transport selectivity into gold nanotubule membranes. J Am Chem Soc 120:6603–6604CrossRef Hulteen JC, Jirage KB, Martin CR (1998) Introducing chemical transport selectivity into gold nanotubule membranes. J Am Chem Soc 120:6603–6604CrossRef
Zurück zum Zitat Jagerszki G, Gyurcsanyi R, Hofler L, Pretsch E (2007) Hybridization-modulated ion fluxes through peptide-nucleic-acid-functionalized gold nanotubes. A new approach to quantitative label-free DNA analysis. Nano Lett 7:1609–1612CrossRef Jagerszki G, Gyurcsanyi R, Hofler L, Pretsch E (2007) Hybridization-modulated ion fluxes through peptide-nucleic-acid-functionalized gold nanotubes. A new approach to quantitative label-free DNA analysis. Nano Lett 7:1609–1612CrossRef
Zurück zum Zitat Jirage KB, Hulteen JC, Martin CR (1999) Effect of thiol chemisorption on the transport properties of gold nanotubule membranes. Anal Chem 71:4913–4918CrossRef Jirage KB, Hulteen JC, Martin CR (1999) Effect of thiol chemisorption on the transport properties of gold nanotubule membranes. Anal Chem 71:4913–4918CrossRef
Zurück zum Zitat Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948CrossRef Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948CrossRef
Zurück zum Zitat Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:123114CrossRef Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:123114CrossRef
Zurück zum Zitat Kemery PJ, Steehler JK, Bohn PW (1998) Electric field mediated transport in nanometer diameter channels. Langmuir 14:2884–2889CrossRef Kemery PJ, Steehler JK, Bohn PW (1998) Electric field mediated transport in nanometer diameter channels. Langmuir 14:2884–2889CrossRef
Zurück zum Zitat Khandurina J, Jacobson SC, Waters LC, Foote RS, Ramsey JM (1999) Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Anal Chem 71:1815–1819CrossRef Khandurina J, Jacobson SC, Waters LC, Foote RS, Ramsey JM (1999) Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Anal Chem 71:1815–1819CrossRef
Zurück zum Zitat Kim BY, Swearingen CB, Ho JA, Romanova EV, Bohn PW, Sweedler JV (2007) Direct immobilization of Fab’ in nanocapillaries for manipulating mass-limited samples. J Am Chem Soc 129:7620–7626CrossRef Kim BY, Swearingen CB, Ho JA, Romanova EV, Bohn PW, Sweedler JV (2007) Direct immobilization of Fab’ in nanocapillaries for manipulating mass-limited samples. J Am Chem Soc 129:7620–7626CrossRef
Zurück zum Zitat Kim BY, Yang J, Gong M, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2009) Multidimensional separation of chiral amino acid mixtures in a multilayered three-dimensional hybrid microfluidic/nanofluidic device. Anal Chem 81:2715–2722CrossRef Kim BY, Yang J, Gong M, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2009) Multidimensional separation of chiral amino acid mixtures in a multilayered three-dimensional hybrid microfluidic/nanofluidic device. Anal Chem 81:2715–2722CrossRef
Zurück zum Zitat Kim S, Ko S, Kang K, Han J (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5:297–301CrossRef Kim S, Ko S, Kang K, Han J (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5:297–301CrossRef
Zurück zum Zitat Kohli P, Harrell CC, Cao Z, Gasparac R, Tan W, Martin CR (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305:984–986CrossRef Kohli P, Harrell CC, Cao Z, Gasparac R, Tan W, Martin CR (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305:984–986CrossRef
Zurück zum Zitat Ku J-R, Lai S-M, Ileri N, Ramirez P, Mafe S, Stroeve P (2007) pH and ionic strength effects on amino acid transport through Au-nanotubule membranes charged with self-assembled monolayers. J Phys Chem C 111:2965–2973CrossRef Ku J-R, Lai S-M, Ileri N, Ramirez P, Mafe S, Stroeve P (2007) pH and ionic strength effects on amino acid transport through Au-nanotubule membranes charged with self-assembled monolayers. J Phys Chem C 111:2965–2973CrossRef
Zurück zum Zitat Kuo T-C, Sloan LA, Sweedler JV, Bohn PW (2001) Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow- effect of surface charge density and Debye length. Langmuir 17:6298–6303CrossRef Kuo T-C, Sloan LA, Sweedler JV, Bohn PW (2001) Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow- effect of surface charge density and Debye length. Langmuir 17:6298–6303CrossRef
Zurück zum Zitat Kuo T-C, Cannon DM Jr, Chen Y, Tulock JJ, Shannon MA, Sweedler JV, Bohn PW (2003a) Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal Chem 75:1861–1867CrossRef Kuo T-C, Cannon DM Jr, Chen Y, Tulock JJ, Shannon MA, Sweedler JV, Bohn PW (2003a) Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal Chem 75:1861–1867CrossRef
Zurück zum Zitat Kuo T-C, Cannon DM Jr, Shannon MA, Bohn PW, Sweedler JV (2003b) Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens Actuators, A 102:223–233CrossRef Kuo T-C, Cannon DM Jr, Shannon MA, Bohn PW, Sweedler JV (2003b) Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens Actuators, A 102:223–233CrossRef
Zurück zum Zitat Kuo T-C, Kim H-K, Cannon DM Jr, Shannon MA, Sweedler JV, Bohn PW (2004) Nanocapillary arrays effect mixing and reaction in multilayer fluidic structures. Angew Chem 116:1898–1901CrossRef Kuo T-C, Kim H-K, Cannon DM Jr, Shannon MA, Sweedler JV, Bohn PW (2004) Nanocapillary arrays effect mixing and reaction in multilayer fluidic structures. Angew Chem 116:1898–1901CrossRef
Zurück zum Zitat Lee SB, Martin CR (2002) Electromodulated molecular transport in gold-nanotube membranes. J Am Chem Soc 124:11850–11851CrossRef Lee SB, Martin CR (2002) Electromodulated molecular transport in gold-nanotube membranes. J Am Chem Soc 124:11850–11851CrossRef
Zurück zum Zitat Lokuge I, Wang X, Bohn PW (2007) Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(N-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization. Langmuir 23:305–311CrossRef Lokuge I, Wang X, Bohn PW (2007) Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(N-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization. Langmuir 23:305–311CrossRef
Zurück zum Zitat Lu Y, Liu J (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17:580–588CrossRef Lu Y, Liu J (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17:580–588CrossRef
Zurück zum Zitat Martin CR, Nishizawa M, Jirage K, Kang MS, Lee SB (2001a) Controlling ion-transport selectivity in gold nanotubule membranes. Adv Mater 13:1351–1362CrossRef Martin CR, Nishizawa M, Jirage K, Kang MS, Lee SB (2001a) Controlling ion-transport selectivity in gold nanotubule membranes. Adv Mater 13:1351–1362CrossRef
Zurück zum Zitat Martin CR, Nishizawa M, Jirage K, Kang M (2001b) Investigations of the transport properties of gold nanotubule membranes. J Phys Chem B 105:1925–1934CrossRef Martin CR, Nishizawa M, Jirage K, Kang M (2001b) Investigations of the transport properties of gold nanotubule membranes. J Phys Chem B 105:1925–1934CrossRef
Zurück zum Zitat Mulero R, Prabhu AS, Freedman KJ, Kim MJ (2010) Nanopore-based devices for bioanalytical applications. JALA 15:243–252 Mulero R, Prabhu AS, Freedman KJ, Kim MJ (2010) Nanopore-based devices for bioanalytical applications. JALA 15:243–252
Zurück zum Zitat Nam S-W, Rooks MJ, Kim K-B, Rossnagel SM (2009) Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett 9:2044–2048CrossRef Nam S-W, Rooks MJ, Kim K-B, Rossnagel SM (2009) Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett 9:2044–2048CrossRef
Zurück zum Zitat Napoli M, Eijkel J, Pennathur S (2010) Nanofluidic technology for biomolecule applications: a critical review. Lab Chip 10:957–985CrossRef Napoli M, Eijkel J, Pennathur S (2010) Nanofluidic technology for biomolecule applications: a critical review. Lab Chip 10:957–985CrossRef
Zurück zum Zitat Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268:700–702CrossRef Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268:700–702CrossRef
Zurück zum Zitat Nystrom M, Lindstrom M, Matthiasson E (1989) Streaming potential as a tool in the characterization of ultrafiltration membranes. Colloids Surf 36:297–312CrossRef Nystrom M, Lindstrom M, Matthiasson E (1989) Streaming potential as a tool in the characterization of ultrafiltration membranes. Colloids Surf 36:297–312CrossRef
Zurück zum Zitat Oukhaled A, Cressiot B, Bacri L, Pastoriza-Gallego M, Betton J-M, Bourhis E, Jede R, Gierak J, Auvray L, Pelta J (2011) Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano 5:3628–3638CrossRef Oukhaled A, Cressiot B, Bacri L, Pastoriza-Gallego M, Betton J-M, Bourhis E, Jede R, Gierak J, Auvray L, Pelta J (2011) Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano 5:3628–3638CrossRef
Zurück zum Zitat Pardon G, van der Wijngaart W (2011) Electrostatic gating of ion and molecule transport through a nanochannel-array membrane. Proc IEEE Solid-State Sens Actuators Microsyst Conf (Transducers) Beijing, China, pp 1610-1613 Pardon G, van der Wijngaart W (2011) Electrostatic gating of ion and molecule transport through a nanochannel-array membrane. Proc IEEE Solid-State Sens Actuators Microsyst Conf (Transducers) Beijing, China, pp 1610-1613
Zurück zum Zitat Perera DNT, Ito T (2010) Cyclic voltammetry on recessed nanodisk-array electrodes prepared from track-etched polycarbonate membranes with 10-nm diameter pores. Analyst 135:172–176CrossRef Perera DNT, Ito T (2010) Cyclic voltammetry on recessed nanodisk-array electrodes prepared from track-etched polycarbonate membranes with 10-nm diameter pores. Analyst 135:172–176CrossRef
Zurück zum Zitat Piruska A, Branagan SP, Cropek DM, Sweedler JV, Bohn PW (2008) Electrokinetically driven fluidic transport in integrated three-dimensional microfluidic devices incorporating gold-coated nanocapillary array membranes. Lab Chip 8:1625–1631CrossRef Piruska A, Branagan SP, Cropek DM, Sweedler JV, Bohn PW (2008) Electrokinetically driven fluidic transport in integrated three-dimensional microfluidic devices incorporating gold-coated nanocapillary array membranes. Lab Chip 8:1625–1631CrossRef
Zurück zum Zitat Piruska A, Branagan SP, Minnis AB, Wang Z, Cropeck DM, Sweedler JV, Bohn PW (2010a) Electrokinetic control of fluid transport in gold-coated nanocapillary array membranes in hybrid nanofluidic-microfluidic devices. Lab Chip 10:1237–1244CrossRef Piruska A, Branagan SP, Minnis AB, Wang Z, Cropeck DM, Sweedler JV, Bohn PW (2010a) Electrokinetic control of fluid transport in gold-coated nanocapillary array membranes in hybrid nanofluidic-microfluidic devices. Lab Chip 10:1237–1244CrossRef
Zurück zum Zitat Piruska A, Gong M, Sweedler JV, Bohn PW (2010b) Nanofluidics in chemical analysis. Chem Soc Rev 39:1060–1072CrossRef Piruska A, Gong M, Sweedler JV, Bohn PW (2010b) Nanofluidics in chemical analysis. Chem Soc Rev 39:1060–1072CrossRef
Zurück zum Zitat Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5:1147–1155CrossRef Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5:1147–1155CrossRef
Zurück zum Zitat Powell MR, Cleary L, Davenport M, Shea KJ, Siwy ZS (2011) Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat Nanotechnol 6:798–802CrossRef Powell MR, Cleary L, Davenport M, Shea KJ, Siwy ZS (2011) Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat Nanotechnol 6:798–802CrossRef
Zurück zum Zitat Prakash S, Yeom J, Jin N, Adesida I, Shannon MA (2007) Characterization of ionic transport at the nanoscale. Proc ASME IMECE, N: J Nanoeng Nanosyst 220:45–52 Prakash S, Yeom J, Jin N, Adesida I, Shannon MA (2007) Characterization of ionic transport at the nanoscale. Proc ASME IMECE, N: J Nanoeng Nanosyst 220:45–52
Zurück zum Zitat Prakash S, Piruska A, Gatimu EN, Bohn PW, Sweedler JV, Shannon MA (2008) Nanofluidics: Systems and Applications. IEEE Sens J 8:441–450CrossRef Prakash S, Piruska A, Gatimu EN, Bohn PW, Sweedler JV, Shannon MA (2008) Nanofluidics: Systems and Applications. IEEE Sens J 8:441–450CrossRef
Zurück zum Zitat Prakash S, Karacor M, Benerjee S (2009) Surface modification in microsystems and nanosystems. Surf Sci Rep 64:233–254CrossRef Prakash S, Karacor M, Benerjee S (2009) Surface modification in microsystems and nanosystems. Surf Sci Rep 64:233–254CrossRef
Zurück zum Zitat Prakash S, Pinti M, Bellman K (2012a) Variable cross-section nanopores fabricated in silicon nitride membranes using a transmission electron microscope. J Micromech Microeng in press Prakash S, Pinti M, Bellman K (2012a) Variable cross-section nanopores fabricated in silicon nitride membranes using a transmission electron microscope. J Micromech Microeng in press
Zurück zum Zitat Prakash S, Pinti M, Bhushan B (2012b) Theory, fabrication and applications of microfluidic and nanofluidic biosensors. Philos Trans R Soc London, Ser A 370:2269–2303CrossRef Prakash S, Pinti M, Bhushan B (2012b) Theory, fabrication and applications of microfluidic and nanofluidic biosensors. Philos Trans R Soc London, Ser A 370:2269–2303CrossRef
Zurück zum Zitat Qiao R, Aluru N (2003) Ion concentration and velocity in nanochannel electroosmotic flows. J Chem Phys 118:4692–4701CrossRef Qiao R, Aluru N (2003) Ion concentration and velocity in nanochannel electroosmotic flows. J Chem Phys 118:4692–4701CrossRef
Zurück zum Zitat Qiao R, Aluru N (2004) Charge inversion and flow reversal in a nanochannel electroosmotic flow. Phys Rev Lett 92:198301CrossRef Qiao R, Aluru N (2004) Charge inversion and flow reversal in a nanochannel electroosmotic flow. Phys Rev Lett 92:198301CrossRef
Zurück zum Zitat Qiao R, Georgiadis J, Aluru N (2006) Differential ion transport induced electroosmosis and internal recirculation in heterogeneous osmosis membranes. Nano Lett 6:995–999CrossRef Qiao R, Georgiadis J, Aluru N (2006) Differential ion transport induced electroosmosis and internal recirculation in heterogeneous osmosis membranes. Nano Lett 6:995–999CrossRef
Zurück zum Zitat Renkin E (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243 Renkin E (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243
Zurück zum Zitat Rice C, Whitehead R (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69:4017–4024CrossRef Rice C, Whitehead R (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69:4017–4024CrossRef
Zurück zum Zitat Sadr R, Yoda M, Gnanaprakasam P, Conlisk AT (2006) Velocity measurements inside the diffuse electric double layer in electro-osmotic flow. Appl Phys Lett 89:044103CrossRef Sadr R, Yoda M, Gnanaprakasam P, Conlisk AT (2006) Velocity measurements inside the diffuse electric double layer in electro-osmotic flow. Appl Phys Lett 89:044103CrossRef
Zurück zum Zitat Schasfoort RB, Schlautmann S, Hendrikse J, van den Berg A (1999) Field-effect flow control for microfabricated fluidic networks. Science 286:942–944CrossRef Schasfoort RB, Schlautmann S, Hendrikse J, van den Berg A (1999) Field-effect flow control for microfabricated fluidic networks. Science 286:942–944CrossRef
Zurück zum Zitat Schibel AE, Heider EC, Harris JM, White HS (2011) Fluorescence microscopy of the pressure-dependent structure of lipid bilayers suspended across conical nanopores. J Am Chem Soc 133:7810–7815CrossRef Schibel AE, Heider EC, Harris JM, White HS (2011) Fluorescence microscopy of the pressure-dependent structure of lipid bilayers suspended across conical nanopores. J Am Chem Soc 133:7810–7815CrossRef
Zurück zum Zitat Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80:839–883CrossRef Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80:839–883CrossRef
Zurück zum Zitat Shannon MA, Flachsbart BR, Iannacone JM, Wong K, Cannon Jr DM, Fa K, Sweedler JV, Bohn PW (2005) Nanofluidic interconnects within a multilayer microfluidic chip for attomolar biochemical analysis and molecular manipulation. Proc 3rd Ann IEEE Int EMBS Special Topic Conf Microtechnol Medicine Biology Kahuhu, pp 257-259 Shannon MA, Flachsbart BR, Iannacone JM, Wong K, Cannon Jr DM, Fa K, Sweedler JV, Bohn PW (2005) Nanofluidic interconnects within a multilayer microfluidic chip for attomolar biochemical analysis and molecular manipulation. Proc 3rd Ann IEEE Int EMBS Special Topic Conf Microtechnol Medicine Biology Kahuhu, pp 257-259
Zurück zum Zitat Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ (2008) Science and technology for water purification in the coming decades. Nature 452:301–310CrossRef Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ (2008) Science and technology for water purification in the coming decades. Nature 452:301–310CrossRef
Zurück zum Zitat Sparreboom W, van den Berg A, Eijkel J (2009) Principles and applications of nanofluidic transport. Nat Nanotechnol 4:713–720CrossRef Sparreboom W, van den Berg A, Eijkel J (2009) Principles and applications of nanofluidic transport. Nat Nanotechnol 4:713–720CrossRef
Zurück zum Zitat Sparreboom W, van den Berg A, Eijkel J (2010) Transport in nanofluidic systems: a review of theory and applications. New J Phys 12:015004CrossRef Sparreboom W, van den Berg A, Eijkel J (2010) Transport in nanofluidic systems: a review of theory and applications. New J Phys 12:015004CrossRef
Zurück zum Zitat Szymczyk A, Aoubiza B, Fievet P, Pagetti J (1999) Electrokinetic phenomena in homogeneous cylindrical pores. J Colloid Interface Sci 216:285–296CrossRef Szymczyk A, Aoubiza B, Fievet P, Pagetti J (1999) Electrokinetic phenomena in homogeneous cylindrical pores. J Colloid Interface Sci 216:285–296CrossRef
Zurück zum Zitat Talaga DS, Li J (2009) Single-Molecule Protein Unfolding in Solid State Nanopores. J Am Chem Soc 131:9287–9297CrossRef Talaga DS, Li J (2009) Single-Molecule Protein Unfolding in Solid State Nanopores. J Am Chem Soc 131:9287–9297CrossRef
Zurück zum Zitat Tulock JJ, Shannon MA, Bohn PW, Sweedler JV (2004) Microfluidic Separation and Gateable Fraction Collection for Mass-Limited Samples. Anal Chem 76:6419–6425CrossRef Tulock JJ, Shannon MA, Bohn PW, Sweedler JV (2004) Microfluidic Separation and Gateable Fraction Collection for Mass-Limited Samples. Anal Chem 76:6419–6425CrossRef
Zurück zum Zitat Vitarelli M, Prakash S, Talaga D (2011) Determining nanocapillary geometry from electrochemical impedance spectroscopy using a variable topology network circuit model. Anal Chem 83:533–541CrossRef Vitarelli M, Prakash S, Talaga D (2011) Determining nanocapillary geometry from electrochemical impedance spectroscopy using a variable topology network circuit model. Anal Chem 83:533–541CrossRef
Zurück zum Zitat Wang Y-C, Stevens A, Han J (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77:4293–4299CrossRef Wang Y-C, Stevens A, Han J (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77:4293–4299CrossRef
Zurück zum Zitat Wang Z, King TL, Branagan SP, Bohn PW (2009) Enzymatic activity of surface-immobilized horseradish peroxidase confined to micrometer- to nanometer-scale structures in nanocapillary array membranes. Analyst 134:851–859CrossRef Wang Z, King TL, Branagan SP, Bohn PW (2009) Enzymatic activity of surface-immobilized horseradish peroxidase confined to micrometer- to nanometer-scale structures in nanocapillary array membranes. Analyst 134:851–859CrossRef
Zurück zum Zitat Wernette DP, Swearingen CB, Cropek DM, Lu Y, Sweedler JV, Bohn PW (2006) Incorporation of a DNAzyme into Au-coated nanocapillary array membranes with an internal standard for Pb(II) sensing. Analyst 131:41–47CrossRef Wernette DP, Swearingen CB, Cropek DM, Lu Y, Sweedler JV, Bohn PW (2006) Incorporation of a DNAzyme into Au-coated nanocapillary array membranes with an internal standard for Pb(II) sensing. Analyst 131:41–47CrossRef
Zurück zum Zitat Yan R, Liang W, Fan R, Yang P (2009) Nanofluidic diodes based on nanotube heterojunctions. Nano Lett 9:3820–3825CrossRef Yan R, Liang W, Fan R, Yang P (2009) Nanofluidic diodes based on nanotube heterojunctions. Nano Lett 9:3820–3825CrossRef
Zurück zum Zitat Zhang Y, Timperman AT (2003) Integration of nanocapillary arrays into microfluidic devices for use as analyte concentrators. Analyst 128:537–542CrossRef Zhang Y, Timperman AT (2003) Integration of nanocapillary arrays into microfluidic devices for use as analyte concentrators. Analyst 128:537–542CrossRef
Metadaten
Titel
Ionic transport in nanocapillary membrane systems
verfasst von
Vikhram V. Swaminathan
Larry R. Gibson II
Marie Pinti
Shaurya Prakash
Paul W. Bohn
Mark A. Shannon
Publikationsdatum
01.08.2012
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 8/2012
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-0951-0

Weitere Artikel der Ausgabe 8/2012

Journal of Nanoparticle Research 8/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.