Skip to main content
Erschienen in: Neural Computing and Applications 17/2021

11.01.2021 | Original Article

Kernel ridge regression model for sediment transport in open channel flow

verfasst von: Mir Jafar Sadegh Safari, Shervin Rahimzadeh Arashloo

Erschienen in: Neural Computing and Applications | Ausgabe 17/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sediment transport modeling is of primary importance for the determination of channel design velocity in lined channels. This study proposes to model sediment transport in open channel flow using kernel ridge regression (KRR), a nonlinear regression technique formulated in the reproducing kernel Hilbert space. While the naïve kernel regression approach provides high flexibility for modeling purposes, the regularized variant is equipped with an additional mechanism for better generalization capability. In order to better tailor the KRR approach to the sediment transport modeling problem, unlike the conventional KRR approach, in this study the kernel parameter is directly learned from the data via a new gradient descent-based learning mechanism. Moreover, for model construction, a procedure based on Cholesky decomposition and forward-back substitution is applied to improve the computational complexity of the approach. Evaluation of the recommended technique is performed utilizing a large number of laboratory experimental data where the examination of the proposed approach in terms of three statistical performance indices for sediment transport modeling indicates a better performance for the developed model in particle Froude number computation, outperforming the conventional models as well as some other machine learning techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat De Sutter R, Rushforth P, Tait S, Huygens M, Verhoeven R, Saul A (2003) Validation of existing bed load transport formulas using in-sewer sediment. J Hydraul Eng 129(4):325–333 De Sutter R, Rushforth P, Tait S, Huygens M, Verhoeven R, Saul A (2003) Validation of existing bed load transport formulas using in-sewer sediment. J Hydraul Eng 129(4):325–333
2.
Zurück zum Zitat Safari MJS, Mohammadi M, Ab Ghani A (2018) Experimental studies of self-cleansing drainage system design: a review. J Pipeline Syst Eng 9(4):04018017 Safari MJS, Mohammadi M, Ab Ghani A (2018) Experimental studies of self-cleansing drainage system design: a review. J Pipeline Syst Eng 9(4):04018017
3.
Zurück zum Zitat CIRIA (1986) Sediment movement in combined sewerage and storm-water drainage systems.” Phase 1. Project report. CIRIA research project No. 336, London CIRIA (1986) Sediment movement in combined sewerage and storm-water drainage systems.” Phase 1. Project report. CIRIA research project No. 336, London
4.
Zurück zum Zitat Safari MJS (2016) Self-cleansing drainage system design by incipient motion and incipient deposition-based models. PhD thesis, Istanbul Technical University, Turkey Safari MJS (2016) Self-cleansing drainage system design by incipient motion and incipient deposition-based models. PhD thesis, Istanbul Technical University, Turkey
5.
Zurück zum Zitat Mayerle R, Nalluri C, Novak P (1991) Sediment transport in rigid bed conveyances. J Hydraul Res 29(4):475–495 Mayerle R, Nalluri C, Novak P (1991) Sediment transport in rigid bed conveyances. J Hydraul Res 29(4):475–495
6.
Zurück zum Zitat May RWP (1993) Sediment transport in pipes and sewers with deposited beds. Technical Report, Hydraulic Research Ltd., Report SR 320, Wallingford, UK May RWP (1993) Sediment transport in pipes and sewers with deposited beds. Technical Report, Hydraulic Research Ltd., Report SR 320, Wallingford, UK
7.
Zurück zum Zitat Ab Ghani A (1993) Sediment transport in sewers. PhD thesis, University of Newcastle upon Tyne Ab Ghani A (1993) Sediment transport in sewers. PhD thesis, University of Newcastle upon Tyne
8.
Zurück zum Zitat Ota JJ (1999) Effect of particle size and gradation on sediment transport in storm sewers. PhD thesis, University of Newcastle Upon Tyne, UK Ota JJ (1999) Effect of particle size and gradation on sediment transport in storm sewers. PhD thesis, University of Newcastle Upon Tyne, UK
9.
Zurück zum Zitat Ota JJ, Nalluri C (2003) Urban storm sewer design: approach in consideration of sediments. J Hydraul Eng 129(4):291–297 Ota JJ, Nalluri C (2003) Urban storm sewer design: approach in consideration of sediments. J Hydraul Eng 129(4):291–297
10.
Zurück zum Zitat Ota JJ, Perrusquia GS (2013) Particle velocity and sediment transport at the limit of deposition in sewers. Water Sci Technol 67(5):959–967 Ota JJ, Perrusquia GS (2013) Particle velocity and sediment transport at the limit of deposition in sewers. Water Sci Technol 67(5):959–967
11.
Zurück zum Zitat Butler D, May R, Ackers J (2003) Self-cleansing sewer design based on sediment transport principles. J Hydraul Eng 129(4):276–282 Butler D, May R, Ackers J (2003) Self-cleansing sewer design based on sediment transport principles. J Hydraul Eng 129(4):276–282
12.
Zurück zum Zitat Vongvisessomjai N, Tingsanchali T, Babel MS (2010) Non-deposition design criteria for sewers with part-full flow. Urban Water J 7(1):61–77 Vongvisessomjai N, Tingsanchali T, Babel MS (2010) Non-deposition design criteria for sewers with part-full flow. Urban Water J 7(1):61–77
13.
Zurück zum Zitat Safari MJS, Aksoy H, Unal NE, Mohammadi M (2017) Non-deposition self-cleansing design criteria for drainage systems. J Hydro-environ Res 14:76–84 Safari MJS, Aksoy H, Unal NE, Mohammadi M (2017) Non-deposition self-cleansing design criteria for drainage systems. J Hydro-environ Res 14:76–84
15.
Zurück zum Zitat Ab Ghani A, Azamathulla HM (2010) Gene-expression programming for sediment transport in sewer pipe systems. J Pipeline Syst Eng 2(3):102–106 Ab Ghani A, Azamathulla HM (2010) Gene-expression programming for sediment transport in sewer pipe systems. J Pipeline Syst Eng 2(3):102–106
16.
Zurück zum Zitat Azamathulla HM, Ab Ghani A, Fei SY (2012) ANFIS-based approach for predicting sediment transport in clean sewer. Appl Soft Comput 12:1227–1230 Azamathulla HM, Ab Ghani A, Fei SY (2012) ANFIS-based approach for predicting sediment transport in clean sewer. Appl Soft Comput 12:1227–1230
17.
Zurück zum Zitat Ebtehaj I, Bonakdari H, Shamshirband S, Mohammadi K (2015) A combined support vector machine-wavelet transform model for prediction of sediment transport in sewer. Flow Meas Instrum 47:19–27 Ebtehaj I, Bonakdari H, Shamshirband S, Mohammadi K (2015) A combined support vector machine-wavelet transform model for prediction of sediment transport in sewer. Flow Meas Instrum 47:19–27
18.
Zurück zum Zitat Safari MJS, Aksoy H, Mohammadi M (2016) Artificial neural network and regression models for flow velocity at sediment incipient deposition. J Hydrol 541:1420–1429 Safari MJS, Aksoy H, Mohammadi M (2016) Artificial neural network and regression models for flow velocity at sediment incipient deposition. J Hydrol 541:1420–1429
19.
Zurück zum Zitat Qasem SN, Ebtehaj I, Bonakdari H (2017) Potential of radial basis function network with particle swarm optimization for prediction of sediment transport at the limit of deposition in a clean pipe, Sustai. Water Resour Manag 3:391–401 Qasem SN, Ebtehaj I, Bonakdari H (2017) Potential of radial basis function network with particle swarm optimization for prediction of sediment transport at the limit of deposition in a clean pipe, Sustai. Water Resour Manag 3:391–401
20.
Zurück zum Zitat Ebtehaj I, Bonakdari H, Zaji AH (2016) An expert system with radial basis function neural network based on decision trees for predicting sediment transport in sewers. Water Sci Technol 74(1):176–183 Ebtehaj I, Bonakdari H, Zaji AH (2016) An expert system with radial basis function neural network based on decision trees for predicting sediment transport in sewers. Water Sci Technol 74(1):176–183
21.
Zurück zum Zitat Ebtehaj I, Bonakdari H, Shamshirband S, Ismail Z, Hashim R (2016) New approach to estimate velocity at limit of deposition in storm sewers using vector machine coupled with firefly algorithm. J Pipeline Syst Eng 20:04016018 Ebtehaj I, Bonakdari H, Shamshirband S, Ismail Z, Hashim R (2016) New approach to estimate velocity at limit of deposition in storm sewers using vector machine coupled with firefly algorithm. J Pipeline Syst Eng 20:04016018
22.
Zurück zum Zitat Ebtehaj I, Bonakdari H (2016) Assessment of evolutionary algorithms in predicting non-deposition sediment transport. Urban Water J 13:499–510 Ebtehaj I, Bonakdari H (2016) Assessment of evolutionary algorithms in predicting non-deposition sediment transport. Urban Water J 13:499–510
23.
Zurück zum Zitat Najafzadeh M, Bonakdari H (2016) Application of a neuro-fuzzy GMDH model for predicting the velocity at limit of deposition in storm sewers. J Pipeline Syst Eng 8:06016003 Najafzadeh M, Bonakdari H (2016) Application of a neuro-fuzzy GMDH model for predicting the velocity at limit of deposition in storm sewers. J Pipeline Syst Eng 8:06016003
24.
Zurück zum Zitat Najafzadeh M, Laucelli DB, Zahiri A (2017) Application of model tree and evolutionary polynomial regression for evaluation of sediment transport in pipes. KSCE J Civ Eng 21:1956–1963 Najafzadeh M, Laucelli DB, Zahiri A (2017) Application of model tree and evolutionary polynomial regression for evaluation of sediment transport in pipes. KSCE J Civ Eng 21:1956–1963
25.
Zurück zum Zitat Roushangar K, Ghasempour R (2017) Prediction of non-cohesive sediment transport in circular channels in deposition and limit of deposition states using SVM. Water Sci Technol Water Supply 17:537–551 Roushangar K, Ghasempour R (2017) Prediction of non-cohesive sediment transport in circular channels in deposition and limit of deposition states using SVM. Water Sci Technol Water Supply 17:537–551
26.
Zurück zum Zitat Roushangar K, Ghasempour R (2017) Estimation of bed load discharge in sewer pipes with different boundary conditions using an evolutionary algorithm. Int J Sediment Res 32(4):564–574 Roushangar K, Ghasempour R (2017) Estimation of bed load discharge in sewer pipes with different boundary conditions using an evolutionary algorithm. Int J Sediment Res 32(4):564–574
27.
Zurück zum Zitat Safari MJS, Shirzad A, Mohammadi M (2017) Sediment transport in deposited bed sewers: unified form of May’s equations using the particle swarm optimization algorithm. Water Sci Technol 76(4):992–1000 Safari MJS, Shirzad A, Mohammadi M (2017) Sediment transport in deposited bed sewers: unified form of May’s equations using the particle swarm optimization algorithm. Water Sci Technol 76(4):992–1000
28.
Zurück zum Zitat Safari MJS, Danandeh Mehr A (2018) Multigene genetic programming for sediment transport modeling in sewers at non-deposition with deposited bed condition. Int J Sediment Res 33(3):262–270 Safari MJS, Danandeh Mehr A (2018) Multigene genetic programming for sediment transport modeling in sewers at non-deposition with deposited bed condition. Int J Sediment Res 33(3):262–270
29.
Zurück zum Zitat Wan Mohtar WHM, Afan H, El-Shafie A, Bong CHJ, Ab Ghani A (2018) Influence of bed deposit in the prediction of incipient sediment motion in sewers using artificial neural networks. Urban Water J 15(4):296–302 Wan Mohtar WHM, Afan H, El-Shafie A, Bong CHJ, Ab Ghani A (2018) Influence of bed deposit in the prediction of incipient sediment motion in sewers using artificial neural networks. Urban Water J 15(4):296–302
30.
Zurück zum Zitat Safari MJS, Shirzad A (2019) Self-cleansing design of sewers: definition of the optimum deposited bed thickness. Water Environ Res 91(5):407–416 Safari MJS, Shirzad A (2019) Self-cleansing design of sewers: definition of the optimum deposited bed thickness. Water Environ Res 91(5):407–416
31.
Zurück zum Zitat Safari MJS (2019) Decision tree (DT), generalized regression neural network (GR) and multivariate adaptive regression splines (MARS) models for sediment transport in sewer pipes. Water Sci Technol 79(6):1113–1122 Safari MJS (2019) Decision tree (DT), generalized regression neural network (GR) and multivariate adaptive regression splines (MARS) models for sediment transport in sewer pipes. Water Sci Technol 79(6):1113–1122
32.
Zurück zum Zitat Kargar K, Safari MJS, Mohammadi M, Samadianfard S (2019) Sediment transport modeling in open channels using neuro-fuzzy and gene expression programming techniques. Water Sci. Tech. 79(12):2318–2327 Kargar K, Safari MJS, Mohammadi M, Samadianfard S (2019) Sediment transport modeling in open channels using neuro-fuzzy and gene expression programming techniques. Water Sci. Tech. 79(12):2318–2327
33.
Zurück zum Zitat Safari MJS, Ebtehaj I, Bonakdari H, Es-haghi MS (2019) Sediment transport modeling in rigid boundary open channels using generalize structure of group method of data handling. J Hydrol 577:123951 Safari MJS, Ebtehaj I, Bonakdari H, Es-haghi MS (2019) Sediment transport modeling in rigid boundary open channels using generalize structure of group method of data handling. J Hydrol 577:123951
34.
Zurück zum Zitat Ebtehaj I, Bonakdari H, Safari MJS, Gharabaghi B, Zaji AH, Madavar HR, Khozani ZS, Es-haghi MS, Shishegaran A, Danandeh Mehr A (2020) Combination of sensitivity and uncertainty analyses for sediment transport modeling in sewer pipes. Int J Sediment Res 35(2):157–170 Ebtehaj I, Bonakdari H, Safari MJS, Gharabaghi B, Zaji AH, Madavar HR, Khozani ZS, Es-haghi MS, Shishegaran A, Danandeh Mehr A (2020) Combination of sensitivity and uncertainty analyses for sediment transport modeling in sewer pipes. Int J Sediment Res 35(2):157–170
35.
Zurück zum Zitat Montes C, Berardi L, Kapelan Z, Saldarriaga J (2020) Predicting bedload sediment transport of non-cohesive material in sewer pipes using evolutionary polynomial regression–multi-objective genetic algorithm strategy. Urban Water J 17(2):154–162 Montes C, Berardi L, Kapelan Z, Saldarriaga J (2020) Predicting bedload sediment transport of non-cohesive material in sewer pipes using evolutionary polynomial regression–multi-objective genetic algorithm strategy. Urban Water J 17(2):154–162
36.
Zurück zum Zitat Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:273–297MATH Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:273–297MATH
37.
Zurück zum Zitat An S, Liu W, Venkatesh S (2007) Face recognition using kernel ridge regression. In: IEEE conference on computer vision and pattern recognition, Minneapolis, MN, pp 1–7 An S, Liu W, Venkatesh S (2007) Face recognition using kernel ridge regression. In: IEEE conference on computer vision and pattern recognition, Minneapolis, MN, pp 1–7
38.
Zurück zum Zitat He J, Ding L, Jiang L, Ma L (2014) Kernel ridge regression classification. In: International joint conference on neural networks (IJCNN), Beijing, pp 2263–2267 He J, Ding L, Jiang L, Ma L (2014) Kernel ridge regression classification. In: International joint conference on neural networks (IJCNN), Beijing, pp 2263–2267
39.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge. ISBN 9780262035613 Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge. ISBN 9780262035613
40.
Zurück zum Zitat Hofmann T, Schölkopf B, Smola AJ (2008) Kernel methods in machine learning. Ann Stat 36:1171–1220MathSciNetMATH Hofmann T, Schölkopf B, Smola AJ (2008) Kernel methods in machine learning. Ann Stat 36:1171–1220MathSciNetMATH
41.
Zurück zum Zitat Raudkivi AJ (1990) Loose boundary hydraulics. Pergamon Press, Oxford Raudkivi AJ (1990) Loose boundary hydraulics. Pergamon Press, Oxford
42.
Zurück zum Zitat Vanoni VA (2006) Sedimentation engineering. ASCE, New York Vanoni VA (2006) Sedimentation engineering. ASCE, New York
43.
Zurück zum Zitat Novak P, Nalluri C (1984) Incipient motion of sediment particles over fixed beds. J Hydraul Res 22(3):181–197 Novak P, Nalluri C (1984) Incipient motion of sediment particles over fixed beds. J Hydraul Res 22(3):181–197
44.
Zurück zum Zitat Safari MJS, Aksoy H, Unal NE, Mohammadi M (2017) Experimental analysis of sediment incipient motion in rigid boundary open channels. Environ Fluid Mech 17(6):1281–1298 Safari MJS, Aksoy H, Unal NE, Mohammadi M (2017) Experimental analysis of sediment incipient motion in rigid boundary open channels. Environ Fluid Mech 17(6):1281–1298
45.
Zurück zum Zitat Craven JP (1953) The transportation of sand in pipes—full pipe flow. In: Proceedings. Of the fifth hydraulics conference, bulletin 34, State University of Iowa Studies in Engineering, Iowa State University, Iowa Craven JP (1953) The transportation of sand in pipes—full pipe flow. In: Proceedings. Of the fifth hydraulics conference, bulletin 34, State University of Iowa Studies in Engineering, Iowa State University, Iowa
46.
Zurück zum Zitat Ambrose HH (1953) The transportation of sand in pipes free surface flow. In: Proceeding of the fifth hydraulic conference, bulletin 34, State University of Iowa Studies in Engineering, Iowa State University, Iowa Ambrose HH (1953) The transportation of sand in pipes free surface flow. In: Proceeding of the fifth hydraulic conference, bulletin 34, State University of Iowa Studies in Engineering, Iowa State University, Iowa
47.
Zurück zum Zitat Durand R (1953) Basic relationships of the transportation of solids in pipes. In: Experimental research, international association for hydraulic research, fifth congress, Minneapolis Durand R (1953) Basic relationships of the transportation of solids in pipes. In: Experimental research, international association for hydraulic research, fifth congress, Minneapolis
48.
Zurück zum Zitat Durand R, Condolois EI (1956) Donnees techniques sur le refoulement hydraulique des materiaux solides en conduite. Rev. L’Industrie Mineral, Special Number F, June Durand R, Condolois EI (1956) Donnees techniques sur le refoulement hydraulique des materiaux solides en conduite. Rev. L’Industrie Mineral, Special Number F, June
49.
Zurück zum Zitat Robinson MP, Graf WH (1972) Pipelining of low concentration sand-water mixtures. J Hydr Eng Div ASCE 98 (HY7) 1221–1240 Robinson MP, Graf WH (1972) Pipelining of low concentration sand-water mixtures. J Hydr Eng Div ASCE 98 (HY7) 1221–1240
50.
Zurück zum Zitat Novak P, Nalluri C (1975) Sediment transport in smooth fixed bed channels. J Hydraul Div ASCE 101(HY9):1139–1154 Novak P, Nalluri C (1975) Sediment transport in smooth fixed bed channels. J Hydraul Div ASCE 101(HY9):1139–1154
51.
Zurück zum Zitat May RWP (1982) Sediment transport in sewers. Report No. IT 222, Hydraulic Research Station, Wallingford May RWP (1982) Sediment transport in sewers. Report No. IT 222, Hydraulic Research Station, Wallingford
52.
Zurück zum Zitat May RWP, Brown PM, Hare GR, Jones KD (1989) Self-cleansing conditions for sewers carrying sediment. Report SR, 221 May RWP, Brown PM, Hare GR, Jones KD (1989) Self-cleansing conditions for sewers carrying sediment. Report SR, 221
53.
Zurück zum Zitat Mayerle R (1988) Sediment transport in rigid boundary channels. PhD thesis, University of Newcastle upon Tyne, UK Mayerle R (1988) Sediment transport in rigid boundary channels. PhD thesis, University of Newcastle upon Tyne, UK
54.
Zurück zum Zitat Kithsiri MMAU (1990) Sediment transport in rectangular channels with rough rigid beds. PhD thesis, University of Newcastle upon Tyne (1990) Kithsiri MMAU (1990) Sediment transport in rectangular channels with rough rigid beds. PhD thesis, University of Newcastle upon Tyne (1990)
55.
Zurück zum Zitat Ackers JC, Butler D, May RWP (1996) Design of sewers to control sediment problems. Construction Industry Research and Information Association (CIRIA) Rep. No. 141, London. pp 1–181 Ackers JC, Butler D, May RWP (1996) Design of sewers to control sediment problems. Construction Industry Research and Information Association (CIRIA) Rep. No. 141, London. pp 1–181
56.
Zurück zum Zitat May RW, Ackers JC, Butler D, John S (1996) Development of design methodology for self-cleansing sewers. Water Sci Technol 33(9):195–205 May RW, Ackers JC, Butler D, John S (1996) Development of design methodology for self-cleansing sewers. Water Sci Technol 33(9):195–205
57.
Zurück zum Zitat Alpaydin E (2010) Introduction to machine learning 2e. MIT Press, CambridgeMATH Alpaydin E (2010) Introduction to machine learning 2e. MIT Press, CambridgeMATH
58.
Zurück zum Zitat Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404 Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404
59.
Zurück zum Zitat Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297MATH Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297MATH
60.
Zurück zum Zitat Mika S, Ratsch G, Weston J, Scholkopf B, Mullers KR (1999) Fisher discriminant analysis with kernels. In: Neural networks for signal processing IX: Proceedings of the 1999 IEEE signal processing society workshop (cat. No. 98th8468). IEEE. (1999), pp 41–48 Mika S, Ratsch G, Weston J, Scholkopf B, Mullers KR (1999) Fisher discriminant analysis with kernels. In: Neural networks for signal processing IX: Proceedings of the 1999 IEEE signal processing society workshop (cat. No. 98th8468). IEEE. (1999), pp 41–48
61.
Zurück zum Zitat Scholkopf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Combridge Scholkopf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Combridge
62.
Zurück zum Zitat Ethem A (2010) Introduction to machine learning, 2nd edn. MIT Press, CombridgeMATH Ethem A (2010) Introduction to machine learning, 2nd edn. MIT Press, CombridgeMATH
63.
Zurück zum Zitat Berlinet A, Thomas C (2004) Reproducing kernel hilbert spaces in probability and statistics. Kluwer Academic Publishers, DordrechtMATH Berlinet A, Thomas C (2004) Reproducing kernel hilbert spaces in probability and statistics. Kluwer Academic Publishers, DordrechtMATH
64.
Zurück zum Zitat Tikhonov AN (1943) Oб ycтoйчивocти oбpaтныx зaдaч [On the stability of inverse problems] Tikhonov AN (1943) Oб ycтoйчивocти oбpaтныx зaдaч [On the stability of inverse problems]
65.
Zurück zum Zitat Saunders C, Gammerman A, Vovk V (1998) Ridge regression learning algorithm in dual variables. In: Proceedings of the 15th international conference on machine learning (ICML98), Madison-Wisconsin. pp 515–521 Saunders C, Gammerman A, Vovk V (1998) Ridge regression learning algorithm in dual variables. In: Proceedings of the 15th international conference on machine learning (ICML98), Madison-Wisconsin. pp 515–521
66.
Zurück zum Zitat Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins, Baltimore. ISBN 978-0-8018-5414-9MATH Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins, Baltimore. ISBN 978-0-8018-5414-9MATH
67.
Zurück zum Zitat Stewart GW (1998) Matrix algorithms: basic decompositions, vol 1. SIAM, PhiladelphiaMATH Stewart GW (1998) Matrix algorithms: basic decompositions, vol 1. SIAM, PhiladelphiaMATH
68.
Zurück zum Zitat Cai D, He X, Han J (2011) Speed up kernel discriminant analysis. VLDB J 20(1):21–33 Cai D, He X, Han J (2011) Speed up kernel discriminant analysis. VLDB J 20(1):21–33
Metadaten
Titel
Kernel ridge regression model for sediment transport in open channel flow
verfasst von
Mir Jafar Sadegh Safari
Shervin Rahimzadeh Arashloo
Publikationsdatum
11.01.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 17/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05571-6

Weitere Artikel der Ausgabe 17/2021

Neural Computing and Applications 17/2021 Zur Ausgabe

S. I : Hybridization of Neural Computing with Nature Inspired Algorithms

Detection of abnormal brain in MRI via improved AlexNet and ELM optimized by chaotic bat algorithm

S. I : Hybridization of Neural Computing with Nature Inspired Algorithms

A deep learning-based hybrid model for recommendation generation and ranking

S.I: Hybridization of Neural Computing with Nature Inspired Algorithms

Comparative analysis of time series model and machine testing systems for crime forecasting

Premium Partner