Skip to main content
Erschienen in: Autonomous Robots 6/2019

19.02.2018

Kinesthetic teaching and attentional supervision of structured tasks in human–robot interaction

verfasst von: Riccardo Caccavale, Matteo Saveriano, Alberto Finzi, Dongheui Lee

Erschienen in: Autonomous Robots | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a framework that allows a robot manipulator to learn how to execute structured tasks from human demonstrations. The proposed system combines physical human–robot interaction with attentional supervision in order to support kinesthetic teaching, incremental learning, and cooperative execution of hierarchically structured tasks. In the proposed framework, the human demonstration is automatically segmented into basic movements, which are related to a task structure by an attentional system that supervises the overall interaction. The attentional system permits to track the human demonstration at different levels of abstraction and supports implicit non-verbal communication both during the teaching and the execution phase. Attention manipulation mechanisms (e.g. object and verbal cueing) can be exploited by the teacher to facilitate the learning process. On the other hand, the attentional system permits flexible and cooperative task execution. The paper describes the overall system architecture and details how cooperative tasks are learned and executed. The proposed approach is evaluated in a human–robot co-working scenario, showing that the robot is effectively able to rapidly learn and flexibly execute structured tasks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469–483.CrossRef Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469–483.CrossRef
Zurück zum Zitat Belardinelli, A., Pirri, F., & Carbone, A. (2007). Bottom-up gaze shifts and fixations learning by imitation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(2), 256–271.CrossRef Belardinelli, A., Pirri, F., & Carbone, A. (2007). Bottom-up gaze shifts and fixations learning by imitation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(2), 256–271.CrossRef
Zurück zum Zitat Bischoff, R., Kurth, J., Schreiber, G., Koeppe, R., Albu-Schäffer, A., Beyer, A., Eiberger, O., Haddadin, S., Stemmer, A., Grunwald, G., & Hirzinger, G. (2010). The KUKA-DLR lightweight robot arm—A new reference platform for robotics research and manufacturing. In International symposium on robotics (pp. 1–8). Bischoff, R., Kurth, J., Schreiber, G., Koeppe, R., Albu-Schäffer, A., Beyer, A., Eiberger, O., Haddadin, S., Stemmer, A., Grunwald, G., & Hirzinger, G. (2010). The KUKA-DLR lightweight robot arm—A new reference platform for robotics research and manufacturing. In International symposium on robotics (pp. 1–8).
Zurück zum Zitat Borji, A., Ahmadabadi, M. N., Araabi, B. N., & Hamidi, M. (2010). Online learning of task-driven object-based visual attention control. Image and Vision Computing, 28(7), 1130–1145.CrossRef Borji, A., Ahmadabadi, M. N., Araabi, B. N., & Hamidi, M. (2010). Online learning of task-driven object-based visual attention control. Image and Vision Computing, 28(7), 1130–1145.CrossRef
Zurück zum Zitat Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624.CrossRef Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624.CrossRef
Zurück zum Zitat Breazeal, C., & Berlin M. (2008). Spatial scaffolding for sociable robot learning. In Proceedings of AAAI-2008 (pp. 1268–1273). Breazeal, C., & Berlin M. (2008). Spatial scaffolding for sociable robot learning. In Proceedings of AAAI-2008 (pp. 1268–1273).
Zurück zum Zitat Broquère, X., Finzi, A., Mainprice, J., Rossi, S., Sidobre, D., & Staffa, M. (2014). An attentional approach to human robot interactive manipulation. International Journal of Social Robotics, 6(4), 533–553.CrossRef Broquère, X., Finzi, A., Mainprice, J., Rossi, S., Sidobre, D., & Staffa, M. (2014). An attentional approach to human robot interactive manipulation. International Journal of Social Robotics, 6(4), 533–553.CrossRef
Zurück zum Zitat Caccavale, R., Cacace, J., Fiore, M., Alami, R., & Finzi, A. (2016). Attentional supervision of human–robot collaborative plans. In RO-MAN (pp. 867–873). Caccavale, R., Cacace, J., Fiore, M., Alami, R., & Finzi, A. (2016). Attentional supervision of human–robot collaborative plans. In RO-MAN (pp. 867–873).
Zurück zum Zitat Caccavale, R., & Finzi, A. (2015). Plan execution and attentional regulations for flexible human–robot interaction. In Proceedings of SMC, 2015 (pp. 2453–2458). Caccavale, R., & Finzi, A. (2015). Plan execution and attentional regulations for flexible human–robot interaction. In Proceedings of SMC, 2015 (pp. 2453–2458).
Zurück zum Zitat Caccavale, R., & Finzi, A. (2016). Flexible task execution and attentional regulations in human-robot interaction. IEEE Transactions on Cognitive and Developmental Systems, 9(1), 68–79.CrossRef Caccavale, R., & Finzi, A. (2016). Flexible task execution and attentional regulations in human-robot interaction. IEEE Transactions on Cognitive and Developmental Systems, 9(1), 68–79.CrossRef
Zurück zum Zitat Caccavale, R., Leone, E., Lucignano, L., Rossi, S., Staffa, M., & Finzi, A. (2014). Attentional regulations in a situated human–robot dialogue. In: RO-MAN (pp. 844–849). Caccavale, R., Leone, E., Lucignano, L., Rossi, S., Staffa, M., & Finzi, A. (2014). Attentional regulations in a situated human–robot dialogue. In: RO-MAN (pp. 844–849).
Zurück zum Zitat Cooper, R. P., & Shallice, T. (2006). Hierarchical schemas and goals in the control of sequential behavior. Psychological Review, 113(4), 887–916.CrossRef Cooper, R. P., & Shallice, T. (2006). Hierarchical schemas and goals in the control of sequential behavior. Psychological Review, 113(4), 887–916.CrossRef
Zurück zum Zitat De Maria, G., Falco, P., Natale, C., & Pirozzi, S. (2015). Integrated force/tactile sensing: The enabling technology for slipping detection and avoidance. In International Conference on Robotics and Automation (pp. 3883–3889). De Maria, G., Falco, P., Natale, C., & Pirozzi, S. (2015). Integrated force/tactile sensing: The enabling technology for slipping detection and avoidance. In International Conference on Robotics and Automation (pp. 3883–3889).
Zurück zum Zitat Dillmann, R. (2004). Teaching and learning of robot tasks via observation of human performance. Robotics and Autonomous Systems, 47(2), 109–116.MathSciNetCrossRef Dillmann, R. (2004). Teaching and learning of robot tasks via observation of human performance. Robotics and Autonomous Systems, 47(2), 109–116.MathSciNetCrossRef
Zurück zum Zitat Fod, A., Matarić, M. J., & Jenkins, O. C. (2002). Automated derivation of primitives for movement classification. Autonomous Robots, 12(1), 39–54.MATHCrossRef Fod, A., Matarić, M. J., & Jenkins, O. C. (2002). Automated derivation of primitives for movement classification. Autonomous Robots, 12(1), 39–54.MATHCrossRef
Zurück zum Zitat Garrido-Jurado, S., Muñoz Salinas, R., Madrid-Cuevas, F. J., & Marín-Jiménez, M. J. (2014). Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition, 47(6), 2280–2292.CrossRef Garrido-Jurado, S., Muñoz Salinas, R., Madrid-Cuevas, F. J., & Marín-Jiménez, M. J. (2014). Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition, 47(6), 2280–2292.CrossRef
Zurück zum Zitat Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., & Schaal, S. (2013). Dynamical Movement Primitives: Learning attractor models for motor behaviors. Neural Computation, 25(2), 328–373.MathSciNetMATHCrossRef Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., & Schaal, S. (2013). Dynamical Movement Primitives: Learning attractor models for motor behaviors. Neural Computation, 25(2), 328–373.MathSciNetMATHCrossRef
Zurück zum Zitat Kawamura, K., Gordon, S. M., Erdemir, E., & Hall, J. (2007). Implementation of cognitive control for a humanoid robot. International Journal of Humanoid Robotics, 5(4), 547–586.CrossRef Kawamura, K., Gordon, S. M., Erdemir, E., & Hall, J. (2007). Implementation of cognitive control for a humanoid robot. International Journal of Humanoid Robotics, 5(4), 547–586.CrossRef
Zurück zum Zitat Koppula, H. S., & Saxena, A. (2015). Anticipating human activities using object affordances for reactive robotic response. Transactions on Pattern Analysis and Machine Intelligence, 38(1), 14–29.CrossRef Koppula, H. S., & Saxena, A. (2015). Anticipating human activities using object affordances for reactive robotic response. Transactions on Pattern Analysis and Machine Intelligence, 38(1), 14–29.CrossRef
Zurück zum Zitat Kulić, D., Ott, C., Lee, D., Ishikawa, J., & Nakamura, Y. (2012). Incremental learning of full body motion primitives and their sequencing through human motion observation. International Journal of Robotics Research, 31(3), 330–345.CrossRef Kulić, D., Ott, C., Lee, D., Ishikawa, J., & Nakamura, Y. (2012). Incremental learning of full body motion primitives and their sequencing through human motion observation. International Journal of Robotics Research, 31(3), 330–345.CrossRef
Zurück zum Zitat Lee, D., & Ott, C. (2011). Incremental kinesthetic teaching of motion primitives using the motion refinement tube. Autonomous Robots, 31(2), 115–131.CrossRef Lee, D., & Ott, C. (2011). Incremental kinesthetic teaching of motion primitives using the motion refinement tube. Autonomous Robots, 31(2), 115–131.CrossRef
Zurück zum Zitat Magnanimo, V., Saveriano, M., Rossi, S., & Lee, D. (2014). A bayesian approach for task recognition and future human activity prediction. In International symposium on robot and human interactive communication (pp. 726–731). Magnanimo, V., Saveriano, M., Rossi, S., & Lee, D. (2014). A bayesian approach for task recognition and future human activity prediction. In International symposium on robot and human interactive communication (pp. 726–731).
Zurück zum Zitat Manschitz, S., Kober, J., Gienger, M., & Peters, J. (2015). Learning movement primitive attractor goals and sequential skills from kinesthetic demonstrations. Robotics and Autonomous Systems, 74(Part A), 97–107. Manschitz, S., Kober, J., Gienger, M., & Peters, J. (2015). Learning movement primitive attractor goals and sequential skills from kinesthetic demonstrations. Robotics and Autonomous Systems, 74(Part A), 97–107.
Zurück zum Zitat Nagai, Y. (2009). From bottom-up visual attention to robot action learning. In Proceedings of international conference on development and learning (pp. 1–6). Nagai, Y. (2009). From bottom-up visual attention to robot action learning. In Proceedings of international conference on development and learning (pp. 1–6).
Zurück zum Zitat Nau, D. S., Au, T., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., et al. (2003). SHOP2: An HTN planning system. Journal of Artificial Intelligence Research (JAIR), 20, 379–404.MATHCrossRef Nau, D. S., Au, T., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., et al. (2003). SHOP2: An HTN planning system. Journal of Artificial Intelligence Research (JAIR), 20, 379–404.MATHCrossRef
Zurück zum Zitat Nicolescu, M. N., & Mataric, M. J. (2003). Natural methods for robot task learning: Instructive demonstrations, generalization and practice. In Proceedings of the second international joint conference on autonomous agents and multiagent systems, ACM (pp. 241–248). Nicolescu, M. N., & Mataric, M. J. (2003). Natural methods for robot task learning: Instructive demonstrations, generalization and practice. In Proceedings of the second international joint conference on autonomous agents and multiagent systems, ACM (pp. 241–248).
Zurück zum Zitat Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research and theory (Vol. 4, pp. 1–18). Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research and theory (Vol. 4, pp. 1–18).
Zurück zum Zitat Park, D. H., Hoffmann, H., Pastor, P., & Schaal, S. (2008). Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields. In International conference on humanoid robotics (pp. 91–98). Park, D. H., Hoffmann, H., Pastor, P., & Schaal, S. (2008). Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields. In International conference on humanoid robotics (pp. 91–98).
Zurück zum Zitat Pastor, P., Kalakrishnan, M., Righetti, L., & Schaal, S. (2012). Towards associative skill memories. In International conference on humanoid robots (pp. 309–315). Pastor, P., Kalakrishnan, M., Righetti, L., & Schaal, S. (2012). Towards associative skill memories. In International conference on humanoid robots (pp. 309–315).
Zurück zum Zitat Ramirez-Amaro, K., Beetz, M., & Cheng, G. (2015). Understanding the intention of human activities through semantic perception: Observation, understanding and execution on a humanoid robot. Advanced Robotics, 29(5), 345–362.CrossRef Ramirez-Amaro, K., Beetz, M., & Cheng, G. (2015). Understanding the intention of human activities through semantic perception: Observation, understanding and execution on a humanoid robot. Advanced Robotics, 29(5), 345–362.CrossRef
Zurück zum Zitat Roa, MA., Argus, MJ., Leidner, D., Borst, C., & Hirzinger, G. (2012). Power grasp planning for anthropomorphic robot hands. In International conference on robotics and automation (pp. 563–569). Roa, MA., Argus, MJ., Leidner, D., Borst, C., & Hirzinger, G. (2012). Power grasp planning for anthropomorphic robot hands. In International conference on robotics and automation (pp. 563–569).
Zurück zum Zitat Rossi, S., Leone, E., Fiore, M., Finzi, A., & Cutugno, F. (2013). An extensible architecture for robust multimodal human–robot communication. In Proceedings of IROS-2013 (pp. 2208–2213). Rossi, S., Leone, E., Fiore, M., Finzi, A., & Cutugno, F. (2013). An extensible architecture for robust multimodal human–robot communication. In Proceedings of IROS-2013 (pp. 2208–2213).
Zurück zum Zitat Saveriano, M., Lee, D (2013). Point cloud based dynamical system modulation for reactive avoidance of convex and concave obstacles. In International conference on intelligent robots and systems (pp. 5380–5387). Saveriano, M., Lee, D (2013). Point cloud based dynamical system modulation for reactive avoidance of convex and concave obstacles. In International conference on intelligent robots and systems (pp. 5380–5387).
Zurück zum Zitat Saveriano, M., & Lee, D. (2014). Distance based dynamical system modulation for reactive avoidance of moving obstacles. In Proceedings of ICRA-2014 (pp. 5618–5623). Saveriano, M., & Lee, D. (2014). Distance based dynamical system modulation for reactive avoidance of moving obstacles. In Proceedings of ICRA-2014 (pp. 5618–5623).
Zurück zum Zitat Saveriano, M., An, S., & Lee, D. (2015). Incremental kinesthetic teaching of end-effector and null-space motion primitives. ICRA, 2015, 3570–3575. Saveriano, M., An, S., & Lee, D. (2015). Incremental kinesthetic teaching of end-effector and null-space motion primitives. ICRA, 2015, 3570–3575.
Zurück zum Zitat Saveriano, M., Hirt, F., & Lee, L. (2017). Human-aware motion reshaping using dynamical systems. Pattern Recognition Letters, 99(11), 96–104.CrossRef Saveriano, M., Hirt, F., & Lee, L. (2017). Human-aware motion reshaping using dynamical systems. Pattern Recognition Letters, 99(11), 96–104.CrossRef
Zurück zum Zitat Takano, W., & Nakamura, Y. (2016). Real-time unsupervised segmentation of human whole-body motion and its application to humanoid robot acquisition of motion symbols. Robotics and Autonomous Systems, 75(Part B), 260–272. Takano, W., & Nakamura, Y. (2016). Real-time unsupervised segmentation of human whole-body motion and its application to humanoid robot acquisition of motion symbols. Robotics and Autonomous Systems, 75(Part B), 260–272.
Zurück zum Zitat Tenorth, M., & Beetz, M. (2013). Knowrob—A knowledge processing infrastructure for cognition-enabled robots. International Journal of Robotics Research, 32(5), 566–590.CrossRef Tenorth, M., & Beetz, M. (2013). Knowrob—A knowledge processing infrastructure for cognition-enabled robots. International Journal of Robotics Research, 32(5), 566–590.CrossRef
Zurück zum Zitat Wächter, M., Schulz, S., Asfour, T., Aksoy, E., Wörgötter, & Dillmann, R. (2013). Action sequence reproduction based on automatic segmentation and object-action complexes. In International conference on humanoid robots (pp. 189–195). Wächter, M., Schulz, S., Asfour, T., Aksoy, E., Wörgötter, & Dillmann, R. (2013). Action sequence reproduction based on automatic segmentation and object-action complexes. In International conference on humanoid robots (pp. 189–195).
Zurück zum Zitat Zoliner, R., Pardowitz, M., Knoop, S., & Dillmann, R. (2005). Towards cognitive robots: Building hierarchical task representations of manipulations from human demonstration. In International conference on robotics and automation (pp. 1535–1540). Zoliner, R., Pardowitz, M., Knoop, S., & Dillmann, R. (2005). Towards cognitive robots: Building hierarchical task representations of manipulations from human demonstration. In International conference on robotics and automation (pp. 1535–1540).
Metadaten
Titel
Kinesthetic teaching and attentional supervision of structured tasks in human–robot interaction
verfasst von
Riccardo Caccavale
Matteo Saveriano
Alberto Finzi
Dongheui Lee
Publikationsdatum
19.02.2018
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 6/2019
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-018-9706-9

Weitere Artikel der Ausgabe 6/2019

Autonomous Robots 6/2019 Zur Ausgabe

Neuer Inhalt