Skip to main content

2013 | OriginalPaper | Buchkapitel

6. Krylov Subspace and Balanced Truncation Methods for Power System Model Reduction

verfasst von : Shanshan Liu, Peter W. Sauer, Dimitrios Chaniotis, M. A. Pai

Erschienen in: Power System Coherency and Model Reduction

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we discuss two mathematical approaches for model reduction of power systems which do not use coherency information. The advantages of these approaches lie in the ability to handle large systems. The Krylov and balanced truncation methods take into account system reachability and observability in obtaining reduced-order models of the external system, and thus would perform better than methods based simply on eigenvalues. In the case of balanced truncation approach, a sensitivity analysis is carried out. Through the eigenvalue information, we also establish a connection of these methods with the coherency- based approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Podmore, Identification of coherent generators for dynamic equivalents. IEEE Trans. Power Apparatus Syst. PAS–97(4), 1344–1354 (1978)CrossRef R. Podmore, Identification of coherent generators for dynamic equivalents. IEEE Trans. Power Apparatus Syst. PAS–97(4), 1344–1354 (1978)CrossRef
2.
Zurück zum Zitat R. Podmore, A. Germond, Dynamic equivalents for transient stability studies. Systems control, Inc., final report prepared for EPRI project RP-763, April 1977 R. Podmore, A. Germond, Dynamic equivalents for transient stability studies. Systems control, Inc., final report prepared for EPRI project RP-763, April 1977
3.
Zurück zum Zitat L. Wang, M. Klein, S. Yirga, P. Kundur, Dynamic reduction of large power systems for stability studies. IEEE Trans. Power Syst. 12, 889–895 (1997)CrossRef L. Wang, M. Klein, S. Yirga, P. Kundur, Dynamic reduction of large power systems for stability studies. IEEE Trans. Power Syst. 12, 889–895 (1997)CrossRef
4.
Zurück zum Zitat P.V. Kokotović, B. Avramović, J.H. Chow, J.R. Winkelman, Coherency based decomposition and aggregation. Automatica 18, 47–56 (1982)MATHCrossRef P.V. Kokotović, B. Avramović, J.H. Chow, J.R. Winkelman, Coherency based decomposition and aggregation. Automatica 18, 47–56 (1982)MATHCrossRef
5.
Zurück zum Zitat I.J. Perez-Arriaga, G.C. Verghese, F.C. Schweppe, Selective modal analysis with applications to electric power systems, part I: Heuristic introduction. IEEE Trans. Power Apparatus Syst. PAS–101(9), 3117–3125 (1982)CrossRef I.J. Perez-Arriaga, G.C. Verghese, F.C. Schweppe, Selective modal analysis with applications to electric power systems, part I: Heuristic introduction. IEEE Trans. Power Apparatus Syst. PAS–101(9), 3117–3125 (1982)CrossRef
6.
Zurück zum Zitat M.A. Pai, R.P. Adgaonkar, Electromechanical distance measure for decomposition of power systems. Electr. Power Energy Syst. 6(4), 249–254 (1984)CrossRef M.A. Pai, R.P. Adgaonkar, Electromechanical distance measure for decomposition of power systems. Electr. Power Energy Syst. 6(4), 249–254 (1984)CrossRef
7.
Zurück zum Zitat J. Lawler, R.A. Schlueter, P. Rusche, D.L. Hackett, Modal-coherent equivalents derived from an RMS coherency measure. IEEE Trans. Power Apparatus Syst. PAS–99(4), 1415–1425 (1980)CrossRef J. Lawler, R.A. Schlueter, P. Rusche, D.L. Hackett, Modal-coherent equivalents derived from an RMS coherency measure. IEEE Trans. Power Apparatus Syst. PAS–99(4), 1415–1425 (1980)CrossRef
8.
Zurück zum Zitat H. You, V. Vittal, X. Wang, Slow cherency-based islanding. IEEE Trans. Power Syst. 19, 483–491 (2004)CrossRef H. You, V. Vittal, X. Wang, Slow cherency-based islanding. IEEE Trans. Power Syst. 19, 483–491 (2004)CrossRef
9.
Zurück zum Zitat M.-H. Chang, H.-C. Wang, Novel clustering method for coherency identification using an artificial neural network. IEEE Trans. Power Syst. 9, 2056–2062 (1994)CrossRef M.-H. Chang, H.-C. Wang, Novel clustering method for coherency identification using an artificial neural network. IEEE Trans. Power Syst. 9, 2056–2062 (1994)CrossRef
10.
Zurück zum Zitat D. Chaniotis, Krylov Subspace Methods in Power System Studies, Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2001 D. Chaniotis, Krylov Subspace Methods in Power System Studies, Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2001
11.
Zurück zum Zitat S. Liu, Dynamic-Data Driven Real-Time Identification for Electric Power Systems, Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2009 S. Liu, Dynamic-Data Driven Real-Time Identification for Electric Power Systems, Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2009
12.
Zurück zum Zitat W.E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue. Q. Appl. Math. 19, 17–29 (1951)MathSciNet W.E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue. Q. Appl. Math. 19, 17–29 (1951)MathSciNet
13.
Zurück zum Zitat C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stan. 45, 255–282 (1950)MathSciNetCrossRef C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stan. 45, 255–282 (1950)MathSciNetCrossRef
14.
Zurück zum Zitat M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stan. 49, 409–436 (1952)MathSciNetMATHCrossRef M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stan. 49, 409–436 (1952)MathSciNetMATHCrossRef
15.
Zurück zum Zitat C. Lanczos, Solution of systems of linear equations by minimized iterations. J. Res. Natl. Bur. Stan. 49, 33–53 (1952)MathSciNetCrossRef C. Lanczos, Solution of systems of linear equations by minimized iterations. J. Res. Natl. Bur. Stan. 49, 33–53 (1952)MathSciNetCrossRef
16.
Zurück zum Zitat R. Fletcher, Conjugate gradient methods for indefinite systems, in Proceedings of the Dundee Biennal Conference on Numerical Analysis 1974, New York, 1975 R. Fletcher, Conjugate gradient methods for indefinite systems, in Proceedings of the Dundee Biennal Conference on Numerical Analysis 1974, New York, 1975
17.
Zurück zum Zitat R.W. Freund, N.M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for Non-Hermitian matrices: Part 2, NASA Ames Research Center, Technical report no. 90.46, 1990 R.W. Freund, N.M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for Non-Hermitian matrices: Part 2, NASA Ames Research Center, Technical report no. 90.46, 1990
18.
Zurück zum Zitat P. Sonneved, CGS: a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10, 36–52 (1989)CrossRef P. Sonneved, CGS: a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10, 36–52 (1989)CrossRef
19.
Zurück zum Zitat H.A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)MATHCrossRef H.A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)MATHCrossRef
20.
Zurück zum Zitat Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)MathSciNetMATHCrossRef Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn. (SIAM, Philadelphia, 2003)MATHCrossRef Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn. (SIAM, Philadelphia, 2003)MATHCrossRef
22.
Zurück zum Zitat A.C. Antoulas, Approximation of Large-Scale Dynamical Systems (SIAM, Philadelphia, 2005)MATHCrossRef A.C. Antoulas, Approximation of Large-Scale Dynamical Systems (SIAM, Philadelphia, 2005)MATHCrossRef
23.
Zurück zum Zitat S. Gugercin, A.C. Antoulas, A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004)MathSciNetMATHCrossRef S. Gugercin, A.C. Antoulas, A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004)MathSciNetMATHCrossRef
24.
Zurück zum Zitat A. Laub, M. Heath, C. Paige, R. Ward, Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Autom. Control 32, 115–122 (1987)MATHCrossRef A. Laub, M. Heath, C. Paige, R. Ward, Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Autom. Control 32, 115–122 (1987)MATHCrossRef
25.
Zurück zum Zitat B.C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control AC–26, 17–32 (1981)CrossRef B.C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control AC–26, 17–32 (1981)CrossRef
26.
Zurück zum Zitat K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their \(L^\infty \) norms. Int. J. Control 39, 1115–1193 (1984)MathSciNetMATHCrossRef K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their \(L^\infty \) norms. Int. J. Control 39, 1115–1193 (1984)MathSciNetMATHCrossRef
27.
Zurück zum Zitat S. Lall, J.E. Marsden, S. Glavaski, A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12(6), 519–535 (2002)MathSciNetMATHCrossRef S. Lall, J.E. Marsden, S. Glavaski, A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12(6), 519–535 (2002)MathSciNetMATHCrossRef
28.
Zurück zum Zitat S. Lall, C. Beck, Error bounds for balanced model reduction of linear time-varying systems. IEEE Trans. Autom. Control 48, 946–956 (2003)MathSciNetCrossRef S. Lall, C. Beck, Error bounds for balanced model reduction of linear time-varying systems. IEEE Trans. Autom. Control 48, 946–956 (2003)MathSciNetCrossRef
29.
Zurück zum Zitat H. Sandberg, A. Rantzer, Balanced truncation of linear time-varying systems. IEEE Trans. Autom. Control 49, 217–229 (2004)MathSciNetCrossRef H. Sandberg, A. Rantzer, Balanced truncation of linear time-varying systems. IEEE Trans. Autom. Control 49, 217–229 (2004)MathSciNetCrossRef
30.
Zurück zum Zitat P.W. Sauer, M.A. Pai, Power System Dynamics and Stability (Prentice Hall, Englewood Cliffs, 1998) P.W. Sauer, M.A. Pai, Power System Dynamics and Stability (Prentice Hall, Englewood Cliffs, 1998)
31.
33.
Zurück zum Zitat A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola, Global Sensitivity Analysis: The Primer (Wiley-Interscience, New York, 2008) A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola, Global Sensitivity Analysis: The Primer (Wiley-Interscience, New York, 2008)
34.
Zurück zum Zitat D. Chaniotis, M. Pai, Model reduction in power systems using Krylov subspace methods. IEEE Trans. Power Syst. 20, 888–894 (2005)CrossRef D. Chaniotis, M. Pai, Model reduction in power systems using Krylov subspace methods. IEEE Trans. Power Syst. 20, 888–894 (2005)CrossRef
Metadaten
Titel
Krylov Subspace and Balanced Truncation Methods for Power System Model Reduction
verfasst von
Shanshan Liu
Peter W. Sauer
Dimitrios Chaniotis
M. A. Pai
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-1803-0_6