Skip to main content

2016 | OriginalPaper | Buchkapitel

Large Eddy Simulation of Cavitating Throttle Flow

verfasst von : Wilfried Edelbauer, Jure Strucl, Alexander Morozov

Erschienen in: Advances in Hydroinformatics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Reynolds averaged Navier-Stokes equation model (RANS) is state-of-the-art for numerical simulations of cavitating throttle and injector flows. RANS models are based on time-averaged Navier-Stokes equations, and the computational costs are much lower than those for the more advanced Large Eddy Simulations (LES). The principle of LES is low-pass filtering of the Navier-Stokes equations to eliminate the small scales of the solution. In general LES requires higher numerical resolution in space and time, and higher order discretization schemes. In the recent years, clustered processing units provide increased computational resources, and therefore LES simulations became, also for two-phase flows, more and more interesting. The current paper presents Large Eddy Simulations of the cavitating two-phase flow in a rectangular micro-scale throttle operated with Diesel fuel and compares them with RANS simulations. The LES shows interesting new details which cannot be resolved by RANS simulations in general, such as the transition from laminar to turbulent flow in the channel or the phase change caused by turbulent pressure fluctuations in the shear layer. A cavitation erosion model predicts the zones with highest damage probability. All simulations are performed with the commercial CFD code AVL FIRE®. Time-averaged results of the numerically predicted velocity profiles and the liquid–vapor distributions are compared with already published optical measurements performed with the Laser-Induced Fluorescence (LIF) and the light transmission techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alajbegovic, A., Grogger, H., & Phillip, H. (1999). Calculation of transient cavitation in nozzle using two-fluid method. International Conference on Liquid Atomization and Spray Systems, Indianapolis, USA. Alajbegovic, A., Grogger, H., & Phillip, H. (1999). Calculation of transient cavitation in nozzle using two-fluid method. International Conference on Liquid Atomization and Spray Systems, Indianapolis, USA.
2.
Zurück zum Zitat Giannadakis, E., Gavaises, M., & Arcoumanis, C. (2008). Modeling of cavitation in diesel injector nozzles. Journal of Fluid Mechanics, 616, 153–193.CrossRefMATH Giannadakis, E., Gavaises, M., & Arcoumanis, C. (2008). Modeling of cavitation in diesel injector nozzles. Journal of Fluid Mechanics, 616, 153–193.CrossRefMATH
3.
Zurück zum Zitat Alajbegovic, A., Greif, D., Basara, B., & Iben, U. (2003). Cavitation calculation with the two-fluid model, 3rd European-Japanese Two-Phase Flow Group Meeting, Certosa di Pontignano, Italy. Alajbegovic, A., Greif, D., Basara, B., & Iben, U. (2003). Cavitation calculation with the two-fluid model, 3rd European-Japanese Two-Phase Flow Group Meeting, Certosa di Pontignano, Italy.
4.
Zurück zum Zitat Schmidt, S. J., Mihatsch, M., Thalhamer, M., & Adams, N. A. (2011). Assessment of the prediction capability of a thermodynamic cavitation model for the collapse characteristics of a vapor-bubble cloud, WIMRC 3rd International Cavitation Forum 2011, UK. Schmidt, S. J., Mihatsch, M., Thalhamer, M., & Adams, N. A. (2011). Assessment of the prediction capability of a thermodynamic cavitation model for the collapse characteristics of a vapor-bubble cloud, WIMRC 3rd International Cavitation Forum 2011, UK.
5.
Zurück zum Zitat Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269–289.CrossRefMATH Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269–289.CrossRefMATH
6.
Zurück zum Zitat Smagroinsky, J. (1963). General circulation experiments with the primitive equations, 1. The Basic Experiment. Monthly Weather Review, 91, 99–164.CrossRef Smagroinsky, J. (1963). General circulation experiments with the primitive equations, 1. The Basic Experiment. Monthly Weather Review, 91, 99–164.CrossRef
7.
Zurück zum Zitat Morozov, A., & Iben, U. (2008). Experimental analysis and simulation of cavitating throttle flow. 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT 2008, Pretoria, South Africa. Morozov, A., & Iben, U. (2008). Experimental analysis and simulation of cavitating throttle flow. 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT 2008, Pretoria, South Africa.
8.
Zurück zum Zitat Drew, D. A., & Passman, S. L. (1998). Theory of multicomponent fluids. New York: Springer.MATH Drew, D. A., & Passman, S. L. (1998). Theory of multicomponent fluids. New York: Springer.MATH
9.
Zurück zum Zitat Wang, D.M., Han, J., Greif, D., Zun, I., & Perpar, M. (2005). Interfacial area and number density transport equations for modeling multiphase flows with cavitation. 9th International Symposium on Gas-Liquid Two-Phase Flow ASME FEDSM’05, Houston, Texas, USA. Wang, D.M., Han, J., Greif, D., Zun, I., & Perpar, M. (2005). Interfacial area and number density transport equations for modeling multiphase flows with cavitation. 9th International Symposium on Gas-Liquid Two-Phase Flow ASME FEDSM’05, Houston, Texas, USA.
10.
Zurück zum Zitat Berchiche, N., Franc, J. P., & Michel, J. M. (2002). A cavitation erosion model for ductile materials. Journal of Fluids Engineering, 124, 601–606.CrossRef Berchiche, N., Franc, J. P., & Michel, J. M. (2002). A cavitation erosion model for ductile materials. Journal of Fluids Engineering, 124, 601–606.CrossRef
11.
Zurück zum Zitat Franc, J. P., & Riondet, M. (2006). Incubation time and cavitation erosion rate of work-hardening materials. 6th International Symposium on Cavitation CAV2006, Wageningen, The Netherlands. Franc, J. P., & Riondet, M. (2006). Incubation time and cavitation erosion rate of work-hardening materials. 6th International Symposium on Cavitation CAV2006, Wageningen, The Netherlands.
12.
Zurück zum Zitat Greif, D., & Wang, D. M. (2007). Modeling of cavitation erosion within diesel injector and its effect on spray propagation. International Conference Towards Clean Diesel Engines, Ischia, Italy. Greif, D., & Wang, D. M. (2007). Modeling of cavitation erosion within diesel injector and its effect on spray propagation. International Conference Towards Clean Diesel Engines, Ischia, Italy.
13.
Zurück zum Zitat Hanjalic, K., Popovac, M., & Hadziabodic, M. (2004). A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. International Journal of Heat and Fluid Flow, 25, 1047–1051.CrossRef Hanjalic, K., Popovac, M., & Hadziabodic, M. (2004). A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. International Journal of Heat and Fluid Flow, 25, 1047–1051.CrossRef
14.
Zurück zum Zitat Basara, B. (2006). An eddy viscosity transport model based on elliptic relaxation approach. AIAA Journal, 44, 1686–1690.CrossRef Basara, B. (2006). An eddy viscosity transport model based on elliptic relaxation approach. AIAA Journal, 44, 1686–1690.CrossRef
15.
Zurück zum Zitat Durbin, P. A. (1991). Near-wall turbulence closure modelling without damping functions. Theoretical and Computational Fluid Dynamics, 3, 1–13.MATH Durbin, P. A. (1991). Near-wall turbulence closure modelling without damping functions. Theoretical and Computational Fluid Dynamics, 3, 1–13.MATH
16.
Zurück zum Zitat Lee, S. J., Lahey, R. T, Jr, & Jones, O. C, Jr. (1989). The prediction of two-phase turbulence and phase distribution phenomena using a k-e model. Japanese Journal of Multiphase Flow, 3, 335–368.CrossRef Lee, S. J., Lahey, R. T, Jr, & Jones, O. C, Jr. (1989). The prediction of two-phase turbulence and phase distribution phenomena using a k-e model. Japanese Journal of Multiphase Flow, 3, 335–368.CrossRef
17.
Zurück zum Zitat Niĉeno, B., Boucker, M., & Smith, B. L. (2009). Euler-Euler large eddy simulation of a square cross-sectional bubble column using the Neptune CFD code. Science and Technology of Nuclear Installations, 2009, 1–8. Niĉeno, B., Boucker, M., & Smith, B. L. (2009). Euler-Euler large eddy simulation of a square cross-sectional bubble column using the Neptune CFD code. Science and Technology of Nuclear Installations, 2009, 1–8.
18.
Zurück zum Zitat Alajbegovic, A. (2001). Large eddy simulation formalism applied to multiphase flows, ASME 2001 Fluids Engineering Division Summer Meeting, New Orleans, Louisiana, USA. Alajbegovic, A. (2001). Large eddy simulation formalism applied to multiphase flows, ASME 2001 Fluids Engineering Division Summer Meeting, New Orleans, Louisiana, USA.
19.
Zurück zum Zitat Kobayashi, H. (2005). The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Physics of Fluids, 17, 045104.CrossRef Kobayashi, H. (2005). The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Physics of Fluids, 17, 045104.CrossRef
20.
Zurück zum Zitat Kobayashi, H., Hama, F., & Wu, X. (2008). Application of a local SGS model based on coherent structures to complex geometries. International Journal of Heat and Fluid Flow, 29, 640–653.CrossRef Kobayashi, H., Hama, F., & Wu, X. (2008). Application of a local SGS model based on coherent structures to complex geometries. International Journal of Heat and Fluid Flow, 29, 640–653.CrossRef
21.
Zurück zum Zitat Iben, U., Morozov, A., Winklhofer, E., & Wolf, F. (2011). Laser-pulse interferometry applied to high-pressure fluid flow in micro channels. Experiments in Fluids, 40, 597–611.CrossRef Iben, U., Morozov, A., Winklhofer, E., & Wolf, F. (2011). Laser-pulse interferometry applied to high-pressure fluid flow in micro channels. Experiments in Fluids, 40, 597–611.CrossRef
22.
Zurück zum Zitat Sweby, P. K. (1984). High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 21, 995–1011.CrossRefMathSciNetMATH Sweby, P. K. (1984). High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 21, 995–1011.CrossRefMathSciNetMATH
Metadaten
Titel
Large Eddy Simulation of Cavitating Throttle Flow
verfasst von
Wilfried Edelbauer
Jure Strucl
Alexander Morozov
Copyright-Jahr
2016
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-615-7_34