Skip to main content

2016 | OriginalPaper | Buchkapitel

Rans Computations of a Cavitating Tip Vortex

verfasst von : Jean Decaix, Guillaume Balarac, Cécile Münch

Erschienen in: Advances in Hydroinformatics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Swiss national research project Hydronet 2 gathers a consortium of industrial and academic partners supported by the Competence Center of Energy and Mobility (CCEM) and Swiss Electric Research (SER) in order to improve the hydropower plants. One of the research topic focuses on the cavitating tip vortex. Such a vortex takes place in axial turbines as Kaplan turbines used for producing hydroelectricity. This phenomenon drives a lot of drawbacks such as erosion, unsteady flow rate and a decrease of the turbine efficiency. To better understand the behaviour of the tip vortex, computations of a simple test case are performed. The test case consists in a NACA profile mounted in a channel with a gap between the NACA tip and the lateral wall. The computations are carried out with the OpenFOAM solver both in one-phase and two-phase flows. The turbulent motion is modelled with a RANS approach. For the two-phase flow computations, the phase change between liquid and vapour is achieved with the model proposed by Kunz. The results will be compared in cavitating and non-cavitating cases with the experimental data provided by the EPFL Laboratory for Hydraulic Machines. The comparisons deal with global picture of the flow, the trajectory of the tip vortex and the velocity field downstream the NACA profile.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Roussopoulos, K., & Monkewitz, P. A. (2000). Measurements of tip vortex characteristics and the effect of an anti-cavitation lip on a model kaplan turbine blade. Flow, Turbulence and Combustion, 64, 119–144.CrossRefMATH Roussopoulos, K., & Monkewitz, P. A. (2000). Measurements of tip vortex characteristics and the effect of an anti-cavitation lip on a model kaplan turbine blade. Flow, Turbulence and Combustion, 64, 119–144.CrossRefMATH
2.
Zurück zum Zitat Kang, S., & Hirsch, C. (1993). Experimental study on three dimensional flow within a compressor cascade with tip clearance: Part II: The tip leakage vortex. ASME Journal of Turbomachinery, 115, 444–452.CrossRef Kang, S., & Hirsch, C. (1993). Experimental study on three dimensional flow within a compressor cascade with tip clearance: Part II: The tip leakage vortex. ASME Journal of Turbomachinery, 115, 444–452.CrossRef
3.
Zurück zum Zitat Muthanna, C., & Devenport, W. J. (2004). Wake of a compressor cascade with tip gap, part 1: Mean flow and turbulence structure. AIAA Journal, 42(11), 2320–2331.CrossRef Muthanna, C., & Devenport, W. J. (2004). Wake of a compressor cascade with tip gap, part 1: Mean flow and turbulence structure. AIAA Journal, 42(11), 2320–2331.CrossRef
4.
Zurück zum Zitat Wang, Y., & Devenport, W. J. (2004). Wake of a compressor cascade with tip gap, part 2: Effects of endwall motion. AIAA Journal, 42(11), 2332–2340.CrossRef Wang, Y., & Devenport, W. J. (2004). Wake of a compressor cascade with tip gap, part 2: Effects of endwall motion. AIAA Journal, 42(11), 2332–2340.CrossRef
5.
Zurück zum Zitat Devenport, W. J., & Rife, M. C. (1996). The structure and development of a wing-tip vortex. Journal of Fluid Mechanics, 312, 67–106.CrossRefMathSciNet Devenport, W. J., & Rife, M. C. (1996). The structure and development of a wing-tip vortex. Journal of Fluid Mechanics, 312, 67–106.CrossRefMathSciNet
6.
Zurück zum Zitat Higashi, S., Yoshida, Y., & Tsujimoto, Y. (2002). Tip leakage vortex cavitation from the tip clearance of a single hydrofoil. JSME International Journal, 45(3), 662–671. Higashi, S., Yoshida, Y., & Tsujimoto, Y. (2002). Tip leakage vortex cavitation from the tip clearance of a single hydrofoil. JSME International Journal, 45(3), 662–671.
7.
Zurück zum Zitat Kunz, R. F., & Lakshminarayana, B. (1992). Three-dimensional Navier Stokes computation of turbomachinery flows using an explicit numerical procedure and a coupled k-ε turbulence model. ASME Journal of Turbomachinery, 114, 627–642.CrossRef Kunz, R. F., & Lakshminarayana, B. (1992). Three-dimensional Navier Stokes computation of turbomachinery flows using an explicit numerical procedure and a coupled k-ε turbulence model. ASME Journal of Turbomachinery, 114, 627–642.CrossRef
8.
Zurück zum Zitat Borello, D., & Hanjalic, K. (2007). Computation of tip-leakage flow in a linear compressor cascade with a second-moment turbulence closure. International Journal of Heat and Fluid Flow, 28, 587–601.CrossRef Borello, D., & Hanjalic, K. (2007). Computation of tip-leakage flow in a linear compressor cascade with a second-moment turbulence closure. International Journal of Heat and Fluid Flow, 28, 587–601.CrossRef
9.
Zurück zum Zitat You, D., Wang, M., Moin, P., & Mittal, R. (2007). Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow. Journal of Fluid Mechanics, 586, 177–204.CrossRefMATH You, D., Wang, M., Moin, P., & Mittal, R. (2007). Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow. Journal of Fluid Mechanics, 586, 177–204.CrossRefMATH
10.
Zurück zum Zitat You, D., Wang, M., Moin, P., & Mittal, R. (2006). Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade. Physics of Fluids, 18(10), 1051. You, D., Wang, M., Moin, P., & Mittal, R. (2006). Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade. Physics of Fluids, 18(10), 1051.
11.
Zurück zum Zitat Watanabe, S., Seki, H., Higashi, S., Yokota, K., & Tsujimoto, Y. (2001). Modeling of 2-D leakage jet cavitation as a basic study of tip leakage vortex cavitation. Journal of Fluids Engineering, 123, 50–56.CrossRef Watanabe, S., Seki, H., Higashi, S., Yokota, K., & Tsujimoto, Y. (2001). Modeling of 2-D leakage jet cavitation as a basic study of tip leakage vortex cavitation. Journal of Fluids Engineering, 123, 50–56.CrossRef
12.
Zurück zum Zitat Miorini, R. L., & Katz, J. (2012). The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump. Journal of Turbomachinery, 134, 031018. Miorini, R. L., & Katz, J. (2012). The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump. Journal of Turbomachinery, 134, 031018.
13.
Zurück zum Zitat Ugajin, K., & Matsumoto, H. (2009). Numerical analysis of the influence of the tip clearance flows on the unsteady cavitating flows in a three-dimensional inducer. Journal of Hydrodynamics, 21(1), 34–40.CrossRef Ugajin, K., & Matsumoto, H. (2009). Numerical analysis of the influence of the tip clearance flows on the unsteady cavitating flows in a three-dimensional inducer. Journal of Hydrodynamics, 21(1), 34–40.CrossRef
14.
Zurück zum Zitat Cupillard, S. (2013). CFD Simulation of the tip vortex cavitation in a propeller turbine. 5th International Workshop on Cavitation and Dynamic Problems in Hydraulic Machinery, Lausanne, Switzerland. Cupillard, S. (2013). CFD Simulation of the tip vortex cavitation in a propeller turbine. 5th International Workshop on Cavitation and Dynamic Problems in Hydraulic Machinery, Lausanne, Switzerland.
15.
Zurück zum Zitat Decaix, J., Münch, C., & Balarac, G (2013). Numerical computations of a tip vortex including gap with RANS and LES turbulence models. 5th International Workshop on Cavitation and Dynamic Problems in Hydraulic Machinery, Lausanne, Switzerland. Decaix, J., Münch, C., & Balarac, G (2013). Numerical computations of a tip vortex including gap with RANS and LES turbulence models. 5th International Workshop on Cavitation and Dynamic Problems in Hydraulic Machinery, Lausanne, Switzerland.
16.
Zurück zum Zitat Dreyer, M., & Farhat, M. (2013). Experimental characteristics of tip leakage vortex dynamics. 5th International Workshop on Cavitation and Dynamic Problems in Hydraulic Machinery, Lausanne, Switzerland. Dreyer, M., & Farhat, M. (2013). Experimental characteristics of tip leakage vortex dynamics. 5th International Workshop on Cavitation and Dynamic Problems in Hydraulic Machinery, Lausanne, Switzerland.
17.
Zurück zum Zitat Dreyer, M., Decaix, J., Münch, C., & Farhat, M. (2014). Mind the gap–tip leakage vortex in axial turbines. 27th IARH Symposium on Hydraulic Machinery and Systems, Montréal, Canada. Dreyer, M., Decaix, J., Münch, C., & Farhat, M. (2014). Mind the gap–tip leakage vortex in axial turbines. 27th IARH Symposium on Hydraulic Machinery and Systems, Montréal, Canada.
18.
Zurück zum Zitat Menter, F. R. (2009). Review of the shear-stress transport turbulence model experience from an industrial perspective. International Journal of Computational Fluid Dynamics, 23(4), 305–316. Menter, F. R. (2009). Review of the shear-stress transport turbulence model experience from an industrial perspective. International Journal of Computational Fluid Dynamics, 23(4), 305–316.
19.
Zurück zum Zitat Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, S., Lindau, J. W., Gibeling, H. J., et al. (2000). A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Computers and Fluids, 29, 849–875. Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, S., Lindau, J. W., Gibeling, H. J., et al. (2000). A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Computers and Fluids, 29, 849–875.
Metadaten
Titel
Rans Computations of a Cavitating Tip Vortex
verfasst von
Jean Decaix
Guillaume Balarac
Cécile Münch
Copyright-Jahr
2016
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-615-7_35