Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2021

01.01.2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Laser Additive 3D Printing of Titanium Alloys: Current Status, Problems, Trends

verfasst von: N. V. Kazantseva, P. V. Krakhmalev, I. A. Yadroitsava, I. A. Yadroitsev

Erschienen in: Physics of Metals and Metallography | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract—

Features of 3D printing, including laser melting of metal powders, were considered in this work. The effect of laser operation mode on the structure, residual stresses, and properties of manufactured metals was reviewed. A method for choosing process parameters using single tracks as universal for all types of metal laser 3D printers was proposed. Structural characteristics and medical requirements for biocompatible materials were presented. The biocompatible Ti–6Al–4V alloy manufactured by selective laser melting was considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ISO/ASTM 52900:2015: Additive Manufacturing—General Principles—Terminology (International Organization for Standardization, Geneva, 2015). https://www.iso.org/ru/standard/69669.html. ISO/ASTM 52900:2015: Additive Manufacturing—General Principles—Terminology (International Organization for Standardization, Geneva, 2015). https://​www.​iso.​org/​ru/​standard/​69669.​html.​
2.
Zurück zum Zitat GOST (State Standard) R 57558-2017/ISO/ASTM 52900:2015: Additive Manufacturing Processes. General Principles. Part 1. Terminology (Standartinform, Moscow, 2017). http://docs.cntd.ru/document/1200146332. GOST (State Standard) R 57558-2017/ISO/ASTM 52900:2015: Additive Manufacturing Processes. General Principles. Part 1. Terminology (Standartinform, Moscow, 2017). http://​docs.​cntd.​ru/​document/​1200146332.​
3.
Zurück zum Zitat OS Company official website. https://www.eos.info/en OS Company official website. https://​www.​eos.​info/​en
4.
Zurück zum Zitat Concept Laser Company official website. https:// www.ge.com/additive/who-we-are/concept-laser. Concept Laser Company official website. https:// www.ge.com/additive/who-we-are/concept-laser.
5.
Zurück zum Zitat SLM Solution Company official website. https://www.slm-solutions.com. SLM Solution Company official website. https://​www.​slm-solutions.​com.​
6.
Zurück zum Zitat 3D System Company official website. https://www.3dsystems.com/3d-printers/metal. 3D System Company official website. https://​www.​3dsystems.​com/​3d-printers/​metal.​
7.
Zurück zum Zitat Renishaw Company official website. https://www.renishaw.com/en/metal-3d-printing–32084. Renishaw Company official website. https://​www.​renishaw.​com/​en/​metal-3d-printing–32084.
8.
Zurück zum Zitat Wohlers Associates Company official website. https://wohlersassociates.com. Wohlers Associates Company official website. https://​wohlersassociate​s.​com.​
9.
Zurück zum Zitat https://amfg.ai/whitepaper-the-additive-manufacturing-landscape-2019. https://amfg.ai/whitepaper-the-additive-manufacturing-landscape-2019.
10.
Zurück zum Zitat Bugatti Company official website. https://www.bugatti.com/media/news/2018/world-premiere-brake-caliper-from-3-d-printer. Bugatti Company official website. https://​www.​bugatti.​com/​media/​news/​2018/​world-premiere-brake-caliper-from-3-d-printer.​
11.
Zurück zum Zitat EOS Company. https://www.eos.info/en/3d-printing-examples-applications/innovation-stories/aerospace-additive-manufacturing-for-ariane-injection-nozzles. EOS Company. https://​www.​eos.​info/​en/​3d-printing-examples-applications/​innovation-stories/​aerospace-additive-manufacturing-for-ariane-injection-nozzles.​
12.
Zurück zum Zitat I. Yadroitsev, Selective Laser Melting: Direct Manufacturing of 3D Objects by Selective Laser Melting of Metal Powders (LAP Lambert Academic, Saarbrucken, 2009). I. Yadroitsev, Selective Laser Melting: Direct Manufacturing of 3D Objects by Selective Laser Melting of Metal Powders (LAP Lambert Academic, Saarbrucken, 2009).
13.
Zurück zum Zitat C. Meier, R. Penny, Y. Zoua, J. S. Gibbs, and A. J. Hart, “Thermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling, simulation and experimentation,” Annu. Rev. Heat Transf. 20, 241–316 (2017).CrossRef C. Meier, R. Penny, Y. Zoua, J. S. Gibbs, and A. J. Hart, “Thermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling, simulation and experimentation,” Annu. Rev. Heat Transf. 20, 241–316 (2017).CrossRef
14.
Zurück zum Zitat A. Rubenchik, W. King, and S. Wu, “Scaling laws for the additive manufacturing,” J. Mater. Process. Technol. 257, 234–243 (2018).CrossRef A. Rubenchik, W. King, and S. Wu, “Scaling laws for the additive manufacturing,” J. Mater. Process. Technol. 257, 234–243 (2018).CrossRef
15.
Zurück zum Zitat T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components—Process, structure and properties,” Progr. Mater. Sci. 92, 112–224 (2018). T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components—Process, structure and properties,” Progr. Mater. Sci. 92, 112–224 (2018).
16.
Zurück zum Zitat M. Schmidt, M. Merklein, D. Bourell, D. Dimitrov, T. Hausotte, K. Wegener, L. Overmeyer, F. Vollertsen, and G. N. Levy, “Laser based additive manufacturing in industry and academia,” CIRP Ann. 66 (2), 561–583 (2017).CrossRef M. Schmidt, M. Merklein, D. Bourell, D. Dimitrov, T. Hausotte, K. Wegener, L. Overmeyer, F. Vollertsen, and G. N. Levy, “Laser based additive manufacturing in industry and academia,” CIRP Ann. 66 (2), 561–583 (2017).CrossRef
17.
Zurück zum Zitat O. Rehme and C. Emmelmann, “Reproducibility for properties of selective laser melting products,” in Proceedings of the Third International WLT Conf. (LIM 2005) “Lasers in Manufacturing,” Munich, Germany, June 13–16, 2005, Ed. by E. Beyer (AT-Fachverlag, Stuttgart, 2005). O. Rehme and C. Emmelmann, “Reproducibility for properties of selective laser melting products,” in Proceedings of the Third International WLT Conf. (LIM 2005) “Lasers in Manufacturing,” Munich, Germany, June 13–16, 2005, Ed. by E. Beyer (AT-Fachverlag, Stuttgart, 2005).
18.
Zurück zum Zitat P. O’Regan, P. Prickett, R. Setchi, G. Hankins, and N. Jones, “Metal based additive layer manufacturing: variations, correlations and process control,” Procedia Comput. Sci. 96, 216–224 (2016).CrossRef P. O’Regan, P. Prickett, R. Setchi, G. Hankins, and N. Jones, “Metal based additive layer manufacturing: variations, correlations and process control,” Procedia Comput. Sci. 96, 216–224 (2016).CrossRef
19.
Zurück zum Zitat T. Moges, G. Ameta, and P. Witherell, “A review of model inaccuracy and parameter uncertainty in laser powder bed fusion models and simulations,” J. Manuf. Sci. Eng. 141 (4), 040801 (2019).CrossRef T. Moges, G. Ameta, and P. Witherell, “A review of model inaccuracy and parameter uncertainty in laser powder bed fusion models and simulations,” J. Manuf. Sci. Eng. 141 (4), 040801 (2019).CrossRef
20.
Zurück zum Zitat S. Vock, B. Klöden, A. Kirchner, T. Weißgärber, and B. Kieback, “Powders for powder bed fusion: a review,” Prog. Addit. Manuf. 4, 383–397 (2019).CrossRef S. Vock, B. Klöden, A. Kirchner, T. Weißgärber, and B. Kieback, “Powders for powder bed fusion: a review,” Prog. Addit. Manuf. 4, 383–397 (2019).CrossRef
21.
Zurück zum Zitat I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, “Hierarchical design principles of selective laser melting for high quality metallic objects,” Addit. Manuf. 7, 45–56 (2015). I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, “Hierarchical design principles of selective laser melting for high quality metallic objects,” Addit. Manuf. 7, 45–56 (2015).
22.
Zurück zum Zitat E. H. Valente, C. Gundlach, T. L. Christiansen, and M. A. J. Somer, “Effect of scanning strategy during selective laser melting on surface topography, porosity, and microstructure of additively manufactured Ti–6Al–4V,” Appl. Sci. 9, 5554 (2019).CrossRef E. H. Valente, C. Gundlach, T. L. Christiansen, and M. A. J. Somer, “Effect of scanning strategy during selective laser melting on surface topography, porosity, and microstructure of additively manufactured Ti–6Al–4V,” Appl. Sci. 9, 5554 (2019).CrossRef
23.
Zurück zum Zitat L. Parry, I. A. Ashcroft, and R. D. Wildman, “Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation,” Addit. Manuf. 12, 1–15 (2016). L. Parry, I. A. Ashcroft, and R. D. Wildman, “Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation,” Addit. Manuf. 12, 1–15 (2016).
24.
Zurück zum Zitat L. Mugwagwa, D. Dimitrov, S. Matope, and I. Yadroitsev, “Evaluation of the impact of scanning strategies on residual stresses in selective laser melting,” Int. J. Adv. Manuf. Technol. 102 (5–8), 2441–2450 (2019).CrossRef L. Mugwagwa, D. Dimitrov, S. Matope, and I. Yadroitsev, “Evaluation of the impact of scanning strategies on residual stresses in selective laser melting,” Int. J. Adv. Manuf. Technol. 102 (5–8), 2441–2450 (2019).CrossRef
25.
Zurück zum Zitat I. Yadroitsev and I. Smurov, “Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape,” Phys. Procedia 5, 551–560 (2010).CrossRef I. Yadroitsev and I. Smurov, “Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape,” Phys. Procedia 5, 551–560 (2010).CrossRef
26.
Zurück zum Zitat 3D printing software, EOS Company official website. https://www.eos.info/en/additive-manufacturing/software-3d-printing/monitoring-software. 3D printing software, EOS Company official website. https://​www.​eos.​info/​en/​additive-manufacturing/​software-3d-printing/​monitoring-software.​
27.
Zurück zum Zitat Industrial metal additive manufacturing machines, SLM Solution Company official website. https:// www.slm-solutions.com/en/products/software/additivequality. Industrial metal additive manufacturing machines, SLM Solution Company official website. https:// www.slm-solutions.com/en/products/software/additivequality.
28.
Zurück zum Zitat GOST (State Standard) 19807-91: Wrought Titanium and Titanium Alloys. Grades (Izd. Standartov, Moscow, 1992). http://docs.cntd.ru/document/1200006390l. GOST (State Standard) 19807-91: Wrought Titanium and Titanium Alloys. Grades (Izd. Standartov, Moscow, 1992). http://​docs.​cntd.​ru/​document/​1200006390l.​
29.
Zurück zum Zitat U. Zwicker, Titan und Titanlegierungen (Springer-Verlag, Berlin, 1974; Metallurgiya, Moscow, 1979). U. Zwicker, Titan und Titanlegierungen (Springer-Verlag, Berlin, 1974; Metallurgiya, Moscow, 1979).
30.
Zurück zum Zitat A. G. Illarionov and A. A. Popov, Technological and Operation Properties of Titanium Alloys: Manual (Ural State Univ., Yekaterinburg, 2014) [in Russian]. A. G. Illarionov and A. A. Popov, Technological and Operation Properties of Titanium Alloys: Manual (Ural State Univ., Yekaterinburg, 2014) [in Russian].
31.
Zurück zum Zitat B. A. Kolachev, I. S. Pol’kin, and V. D. Talalaev, Foreign Titanium Alloys (All-Russian Institute of Light Alloys, Moscow, 2000) [in Russian]. B. A. Kolachev, I. S. Pol’kin, and V. D. Talalaev, Foreign Titanium Alloys (All-Russian Institute of Light Alloys, Moscow, 2000) [in Russian].
32.
Zurück zum Zitat L. B. Getsov, Materials and Strength of Parts for Gas Turbines (Nedra, Moscow, 1996) [in Russian]. L. B. Getsov, Materials and Strength of Parts for Gas Turbines (Nedra, Moscow, 1996) [in Russian].
33.
Zurück zum Zitat Yu. R. Kolobov, “Nanotechnologies for the formation of medical implants based on titanium alloys with bioactive coatings,” Nanotechnol. Russ. 4, 758–775 (2009).CrossRef Yu. R. Kolobov, “Nanotechnologies for the formation of medical implants based on titanium alloys with bioactive coatings,” Nanotechnol. Russ. 4, 758–775 (2009).CrossRef
34.
Zurück zum Zitat GOST (State Standard) R ISO 5832-3-2014: Implants for Surgery. Metallic Materials. Part 3: Wrought Titanium 6-Aluminium 4-Vanadium Alloy (Standartinform, Moscow, 2016) [in Russian]. http://docs.cntd.ru/document/1200116339. GOST (State Standard) R ISO 5832-3-2014: Implants for Surgery. Metallic Materials. Part 3: Wrought Titanium 6-Aluminium 4-Vanadium Alloy (Standartinform, Moscow, 2016) [in Russian]. http://​docs.​cntd.​ru/​document/​1200116339.​
35.
Zurück zum Zitat ISO 5832-3:2016: Implants for Surgery—Metallic Materials—Part 3: Wrought Titanium 6-Aluminium 4-Vanadium Alloy (International Organization for Standardization, Geneva, 2016). ISO 5832-3:2016: Implants for Surgery—Metallic Materials—Part 3: Wrought Titanium 6-Aluminium 4-Vanadium Alloy (International Organization for Standardization, Geneva, 2016).
36.
Zurück zum Zitat Y. V. R. K. Prasad, T. Seshacharyulu, S. C. Medeiros, and W. G. Frazier, “A study of beta processing of Ti–6Al–4V: Is it trivial?” J. Eng. Mater. Technol. 123 (3), 355–360 (2001).CrossRef Y. V. R. K. Prasad, T. Seshacharyulu, S. C. Medeiros, and W. G. Frazier, “A study of beta processing of Ti–6Al–4V: Is it trivial?” J. Eng. Mater. Technol. 123 (3), 355–360 (2001).CrossRef
37.
Zurück zum Zitat R. G. Zaripova, V. A. Shundalov, A. V. Sharafutdinov, V. D. Sitdikov, I. V. Kandarov, V. V. Latysh, N. G. Zaripov, and I. V. Aleksandrov, “Influence of intensive plastic deformation and processing modes on the structure and mechanical properties of VT6 titanium alloy,” Vestn. Ufimsk. Gos. Aviats. Tekh. Univ. 16 (7), 17–24 (2012). R. G. Zaripova, V. A. Shundalov, A. V. Sharafutdinov, V. D. Sitdikov, I. V. Kandarov, V. V. Latysh, N. G. Zaripov, and I. V. Aleksandrov, “Influence of intensive plastic deformation and processing modes on the structure and mechanical properties of VT6 titanium alloy,” Vestn. Ufimsk. Gos. Aviats. Tekh. Univ. 16 (7), 17–24 (2012).
38.
Zurück zum Zitat G. A. Salishev, R. M. Galeev, O. R. Valiahmetov, S. V. Zherebtsov, M. F. X. Gigliotti, and B. P. Bewlay, “Fine grain processing of titanium alloys,” in Proceedings of the Ninth World Conference on Titanium “Titanium’99: Science and Technology” (Central Research Institute of Structural Materials, St. Petersburg, 1999), Vol. 1, pp. 1563–1568. G. A. Salishev, R. M. Galeev, O. R. Valiahmetov, S. V. Zherebtsov, M. F. X. Gigliotti, and B. P. Bewlay, “Fine grain processing of titanium alloys,” in Proceedings of the Ninth World Conference on Titanium “Titanium’99: Science and Technology” (Central Research Institute of Structural Materials, St. Petersburg, 1999), Vol. 1, pp. 1563–1568.
39.
Zurück zum Zitat M. Peters, G. Lütjering, and G. Ziegler, “Control of microstructures of (α + β) titanium alloys,” Z. Metallkund. 74 (5), 274–282 (1983). M. Peters, G. Lütjering, and G. Ziegler, “Control of microstructures of (α + β) titanium alloys,” Z. Metallkund. 74 (5), 274–282 (1983).
40.
Zurück zum Zitat G. Lütjering, J. C. Williams, and A. Gysler, Titanium, 2nd ed. (Springer-Verlag, New York, 2007). G. Lütjering, J. C. Williams, and A. Gysler, Titanium, 2nd ed. (Springer-Verlag, New York, 2007).
41.
Zurück zum Zitat M. V. Konstantinova, E. A. Guseva, and L. V. Shvedkov, “Surface preparation of titanium alloy blanks for subsequent technological operations,” Sist., Metody, Tekhnol., No. 2 (18), 119–123 (2013). M. V. Konstantinova, E. A. Guseva, and L. V. Shvedkov, “Surface preparation of titanium alloy blanks for subsequent technological operations,” Sist., Metody, Tekhnol., No. 2 (18), 119–123 (2013).
42.
Zurück zum Zitat R. Gaddam, B. Sefer, R. Pederson, and M.-L. Antti, “Study of alpha-case depth in Ti–6Al–2Sn–4Zr–2Mo and Ti–6Al–4V,” IOP Conf. Ser.: Mater. Sci. Eng. 48, 012002 (2013). R. Gaddam, B. Sefer, R. Pederson, and M.-L. Antti, “Study of alpha-case depth in Ti–6Al–2Sn–4Zr–2Mo and Ti–6Al–4V,” IOP Conf. Ser.: Mater. Sci. Eng. 48, 012002 (2013).
43.
Zurück zum Zitat A. M. Bauristhene, K. Mutombo, and W. E. Stump, “Alpha case formation mechanism in Ti–6Al–4V alloy investment castings using YFSZ shell moulds,” J. S. Afr. Inst. Min. Metall. 113, 357–361 (2013). A. M. Bauristhene, K. Mutombo, and W. E. Stump, “Alpha case formation mechanism in Ti–6Al–4V alloy investment castings using YFSZ shell moulds,” J. S. Afr. Inst. Min. Metall. 113, 357–361 (2013).
44.
Zurück zum Zitat A. L. Andreev, N. F. Anoshkin, K. M. Borzetsovskaya, and G. A. Bochvar, Melting and Casting of Titanium Alloys (Metallurgiya, Moscow, 1994), pp. 128–135. A. L. Andreev, N. F. Anoshkin, K. M. Borzetsovskaya, and G. A. Bochvar, Melting and Casting of Titanium Alloys (Metallurgiya, Moscow, 1994), pp. 128–135.
45.
Zurück zum Zitat N. Saunders, “Modeling of phase equilibria in Ti-alloys,” in Proceedings of the Eighth World Conference on Titanium “Titanium ’95: Science and Technology,” Ed. by P. Bleckinsop, W. J. Evans, and H. M. Flower (Institute of Materials, London, 1996). N. Saunders, “Modeling of phase equilibria in Ti-alloys,” in Proceedings of the Eighth World Conference on Titanium “Titanium ’95: Science and Technology,” Ed. by P. Bleckinsop, W. J. Evans, and H. M. Flower (Institute of Materials, London, 1996).
46.
Zurück zum Zitat B. Babu, Physically Based Model for Plasticity and Creep of Ti–6Al–4V (University of Technology, Luleå, 2008). B. Babu, Physically Based Model for Plasticity and Creep of Ti–6Al–4V (University of Technology, Luleå, 2008).
47.
Zurück zum Zitat R. Sahoo, B. B. Jha, and T. K. Sahoo, “Effect of primary alpha phase variation on mechanical behaviour of Ti–6Al–4V alloy,” Mater. Sci. Technol. 31 (12), 1486–1494 (2015).CrossRef R. Sahoo, B. B. Jha, and T. K. Sahoo, “Effect of primary alpha phase variation on mechanical behaviour of Ti–6Al–4V alloy,” Mater. Sci. Technol. 31 (12), 1486–1494 (2015).CrossRef
48.
Zurück zum Zitat W. G. Burgers, “On the process of transition of cubic body-centered modification into the hexagonal-close packed modification of zirconium,” Physica 1 (7), 561–586 (1934).CrossRef W. G. Burgers, “On the process of transition of cubic body-centered modification into the hexagonal-close packed modification of zirconium,” Physica 1 (7), 561–586 (1934).CrossRef
49.
Zurück zum Zitat H. Carreon, A. Ruiz, and B. Santoveña, “Study of aging effects in a Ti–6Al–4V alloy with Widmanstätten and equiaxed microstructures by non-destructive means,” AIP Conf. Proc. 1581, 739 (2014).CrossRef H. Carreon, A. Ruiz, and B. Santoveña, “Study of aging effects in a Ti–6Al–4V alloy with Widmanstätten and equiaxed microstructures by non-destructive means,” AIP Conf. Proc. 1581, 739 (2014).CrossRef
50.
Zurück zum Zitat Titanium: Physical Metallurgy, Processing, and Applications, Ed. by F. H. Froes (ASM Int., Metals Park, OH, 2015). Titanium: Physical Metallurgy, Processing, and Applications, Ed. by F. H. Froes (ASM Int., Metals Park, OH, 2015).
51.
Zurück zum Zitat B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Metal Science and Thermal Treatment of Nonferrous Metals and Alloys (Moscow State Institute of Steel And Alloys, Moscow, 2005) [in Russian]. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Metal Science and Thermal Treatment of Nonferrous Metals and Alloys (Moscow State Institute of Steel And Alloys, Moscow, 2005) [in Russian].
52.
Zurück zum Zitat R. Boyer, G. Welsch, and E. W. Collings, Materials Properties Handbook: Titanium Alloys (ASM Int., Metals Park, OH, 1994), pp. 1079–1082. R. Boyer, G. Welsch, and E. W. Collings, Materials Properties Handbook: Titanium Alloys (ASM Int., Metals Park, OH, 1994), pp. 1079–1082.
53.
Zurück zum Zitat E. Wielewski, C. R. Siviour, and N. Petrinic, “On the correlation between macrozones and twinning in Ti–6Al–4V at very high strain rates,” Scr. Mater. 67, 229–232 (2012).CrossRef E. Wielewski, C. R. Siviour, and N. Petrinic, “On the correlation between macrozones and twinning in Ti–6Al–4V at very high strain rates,” Scr. Mater. 67, 229–232 (2012).CrossRef
54.
Zurück zum Zitat C. Li, G. Li, Y. Yang, M. Varlioglu, and K. Yang, α'' Martensitic twinning in alpha + beta Ti–3.5Al–4.5Mo titanium alloy,” J. Metall. 8, 1–5 (2011). C. Li, G. Li, Y. Yang, M. Varlioglu, and K. Yang, α'' Martensitic twinning in alpha + beta Ti–3.5Al–4.5Mo titanium alloy,” J. Metall. 8, 1–5 (2011).
55.
Zurück zum Zitat D. L. Moffat and D. C. Larbeliestier, “The competition between martensite and omega in quenched Ti–Nb alloys,” Metall. Trans. 19, 1677–1686 (1988).CrossRef D. L. Moffat and D. C. Larbeliestier, “The competition between martensite and omega in quenched Ti–Nb alloys,” Metall. Trans. 19, 1677–1686 (1988).CrossRef
56.
Zurück zum Zitat O. M. Ivasishin, H. M. Flower, and G. Lutjering, “Mechanisms of martensite formation and tempering in titanium alloys and their relationship to mechanical property development,” in Proceedings of the Ninth World Conference on Titanium “Titanium’99: Science and Technology” (Central Research Institute of Structural Materials, St. Petersburg, 1999), pp. 77–84. O. M. Ivasishin, H. M. Flower, and G. Lutjering, “Mechanisms of martensite formation and tempering in titanium alloys and their relationship to mechanical property development,” in Proceedings of the Ninth World Conference on Titanium “Titanium’99: Science and Technology” (Central Research Institute of Structural Materials, St. Petersburg, 1999), pp. 77–84.
57.
Zurück zum Zitat V. M. Dovbysh, P. V. Zabednov, and M. A. Zlenko, “Additive technologies and metal products,” Bibl. Liteishchika, No. 9, 1–57 (2014). V. M. Dovbysh, P. V. Zabednov, and M. A. Zlenko, “Additive technologies and metal products,” Bibl. Liteishchika, No. 9, 1–57 (2014).
58.
Zurück zum Zitat D. V. Dudikhin and A. A. Saprykin, “Use of plasma treatment for the production of specialized metal powder,” Tekhnol. Mater. 1, 13–19 (2017). D. V. Dudikhin and A. A. Saprykin, “Use of plasma treatment for the production of specialized metal powder,” Tekhnol. Mater. 1, 13–19 (2017).
59.
Zurück zum Zitat N. Kazantseva, “Main factors affecting the structure and properties of titanium and cobalt alloys manufactured by the 3D printing,” IOP Conf. Ser.: J. Phys. 1115, 042008 (2018). N. Kazantseva, “Main factors affecting the structure and properties of titanium and cobalt alloys manufactured by the 3D printing,” IOP Conf. Ser.: J. Phys. 1115, 042008 (2018).
60.
Zurück zum Zitat N. Kazantseva, P. Krakhmalev, A. Fefelov, A. Merkushev, M. Ilyinikh, N. Vinogradova, I. Ezhov, and T. Kurennykh, “Oxygen and nitrogen concentrations in the Ti–6Al–4V alloy manufactured by direct metal laser sintering (DMLS) process,” Mater. Lett. 209, 311–314 (2017).CrossRef N. Kazantseva, P. Krakhmalev, A. Fefelov, A. Merkushev, M. Ilyinikh, N. Vinogradova, I. Ezhov, and T. Kurennykh, “Oxygen and nitrogen concentrations in the Ti–6Al–4V alloy manufactured by direct metal laser sintering (DMLS) process,” Mater. Lett. 209, 311–314 (2017).CrossRef
61.
Zurück zum Zitat R. Cunningham, “Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti–6Al–4V,” Mater. Res. Lett. 5 (7), 516–525 (2017).CrossRef R. Cunningham, “Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti–6Al–4V,” Mater. Res. Lett. 5 (7), 516–525 (2017).CrossRef
62.
Zurück zum Zitat P. Krakhmalev, G. Fredriksson, I. Yadroitsava, N. Kazantseva, A. Du Plessis, and I. Yadroitsev, “Deformation behavior and microstructure of Ti6Al4V manufactured by SLM,” Phys. Procedia 83, 778–788 (2016).CrossRef P. Krakhmalev, G. Fredriksson, I. Yadroitsava, N. Kazantseva, A. Du Plessis, and I. Yadroitsev, “Deformation behavior and microstructure of Ti6Al4V manufactured by SLM,” Phys. Procedia 83, 778–788 (2016).CrossRef
63.
Zurück zum Zitat B. Zhang, Y. Li, and Q. Bai, “Defect formation mechanisms in selective laser melting: a review,” Chin. J. Mech. Eng. 30, 515–527 (2017).CrossRef B. Zhang, Y. Li, and Q. Bai, “Defect formation mechanisms in selective laser melting: a review,” Chin. J. Mech. Eng. 30, 515–527 (2017).CrossRef
64.
Zurück zum Zitat L. Cordova, M. Campos, and T. Tinga, “Revealing the effects of powder reuse for selective laser melting by powder characterization,” JOM 71, 1062–107 (2019).CrossRef L. Cordova, M. Campos, and T. Tinga, “Revealing the effects of powder reuse for selective laser melting by powder characterization,” JOM 71, 1062–107 (2019).CrossRef
65.
Zurück zum Zitat M. Simonelli, Y. Y. Tse, and C. Tuck, “Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V,” Mater. Sci. Eng., A 616, 1–11 (2014).CrossRef M. Simonelli, Y. Y. Tse, and C. Tuck, “Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V,” Mater. Sci. Eng., A 616, 1–11 (2014).CrossRef
66.
Zurück zum Zitat N. V. Kazantseva, P. V. Krakhmalev, G. Fredriksson, N. I. Vinogradova, I. A. Yadroitsev, and I. V. Ezhov, “Twins in Ti–6Al–4V alloy after selective laser fusion,” Titan, No. 2, 8–15 (2017). N. V. Kazantseva, P. V. Krakhmalev, G. Fredriksson, N. I. Vinogradova, I. A. Yadroitsev, and I. V. Ezhov, “Twins in Ti–6Al–4V alloy after selective laser fusion,” Titan, No. 2, 8–15 (2017).
67.
Zurück zum Zitat N. Kazantseva, P. Krakhmalev, I. Yadroitsev, A. Fefelov, N. Vinogradova, I. Ezhov, and T. Kurennykh, “Texture and twinning in selective laser melting Ti–6Al–4V alloys,” Int. J. Mater. Metall. Eng. 11 (11), 723–726 (2017). N. Kazantseva, P. Krakhmalev, I. Yadroitsev, A. Fefelov, N. Vinogradova, I. Ezhov, and T. Kurennykh, “Texture and twinning in selective laser melting Ti–6Al–4V alloys,” Int. J. Mater. Metall. Eng. 11 (11), 723–726 (2017).
68.
Zurück zum Zitat L. Thijs, F. Verhaeghe, T. Craeghs, J. van Humbeeck, and J.-P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti–6Al–4V,” Acta Mater. 58, 3303–3312 (2010).CrossRef L. Thijs, F. Verhaeghe, T. Craeghs, J. van Humbeeck, and J.-P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti–6Al–4V,” Acta Mater. 58, 3303–3312 (2010).CrossRef
69.
Zurück zum Zitat N. Kazantseva, P. Krakhmalev, M. Thuvander, I. Yadroitsev, N. Vinogradova, and I. Ezhov, “Martensitic transformations in Ti–6Al–4V (ELI) alloy manufactured by 3D printing,” Mater. Charact. 146, 101–112 (2018).CrossRef N. Kazantseva, P. Krakhmalev, M. Thuvander, I. Yadroitsev, N. Vinogradova, and I. Ezhov, “Martensitic transformations in Ti–6Al–4V (ELI) alloy manufactured by 3D printing,” Mater. Charact. 146, 101–112 (2018).CrossRef
70.
Zurück zum Zitat M. Yan and P. Yu, “An overview of densification, microstructure and mechanical property of additively manufactured Ti–6Al–4V–comparison among selective laser melting, electron beam melting, laser metal deposition and selective laser sintering, and with conventional powder,” in Sintering Techniques of Materials, Ed. by A. Lakshmana (InTech Open, London, 2015), Chap. 5, pp. 77–106.CrossRef M. Yan and P. Yu, “An overview of densification, microstructure and mechanical property of additively manufactured Ti–6Al–4V–comparison among selective laser melting, electron beam melting, laser metal deposition and selective laser sintering, and with conventional powder,” in Sintering Techniques of Materials, Ed. by A. Lakshmana (InTech Open, London, 2015), Chap. 5, pp. 77–106.CrossRef
71.
Zurück zum Zitat E. W. Lui, W. Xu, A. Pateras, M. Qian, and M. Brandt, “New development in selective laser melting of Ti–6Al–4V: a wider processing window for the achievement of fully lamellar α + β microstructures,” JOM 69 (12), 2679–2683 (2017).CrossRef E. W. Lui, W. Xu, A. Pateras, M. Qian, and M. Brandt, “New development in selective laser melting of Ti–6Al–4V: a wider processing window for the achievement of fully lamellar α + β microstructures,” JOM 69 (12), 2679–2683 (2017).CrossRef
72.
Zurück zum Zitat A. Zafari, M. R. Barati, and K. Xia, “Controlling martensitic decomposition during selective laser melting to achieve best ductility in high strength Ti–6Al–4V,” Mater. Sci. Eng., A 744, 445–455 (2019).CrossRef A. Zafari, M. R. Barati, and K. Xia, “Controlling martensitic decomposition during selective laser melting to achieve best ductility in high strength Ti–6Al–4V,” Mater. Sci. Eng., A 744, 445–455 (2019).CrossRef
73.
Zurück zum Zitat P. Barriobero-Vila, J. Gussone, J. Haubrich, S. Sandlöbes, J. C. Da Silva, P. Cloetens, N. Schell, and G. Requena, “Inducing stable α + β microstructures during selective laser melting of Ti–6Al–4V using intensified intrinsic heat treatments,” Materials 10, 268 (2017).CrossRef P. Barriobero-Vila, J. Gussone, J. Haubrich, S. Sandlöbes, J. C. Da Silva, P. Cloetens, N. Schell, and G. Requena, “Inducing stable α + β microstructures during selective laser melting of Ti–6Al–4V using intensified intrinsic heat treatments,” Materials 10, 268 (2017).CrossRef
74.
Zurück zum Zitat X. Tan, Y. Kok, W. Q. Toh, Y. J. Tan, M. Descoins, D. Mangelinck, S. B. Tor, K. F. Leong, and C. K. Chua, “Revealing martensitic transformation and α–β interface evolution in electron beam melting three-dimensional-printed Ti–6Al–4V,” Sci. Rep. 6, 26039 (2016).CrossRef X. Tan, Y. Kok, W. Q. Toh, Y. J. Tan, M. Descoins, D. Mangelinck, S. B. Tor, K. F. Leong, and C. K. Chua, “Revealing martensitic transformation and α–β interface evolution in electron beam melting three-dimensional-printed Ti–6Al–4V,” Sci. Rep. 6, 26039 (2016).CrossRef
75.
Zurück zum Zitat L. E. Murr, S. A. Quinones, S. M. Gaytan, M. I. Lopez, A. Rodela, E. Y. Martinez, D. H. Hernandez, E. Martinez, F. Medina, and R. B. Vicker, “Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications,” J. Mech. Behav. Biomed. Mater. 2, 20–32 (2009).CrossRef L. E. Murr, S. A. Quinones, S. M. Gaytan, M. I. Lopez, A. Rodela, E. Y. Martinez, D. H. Hernandez, E. Martinez, F. Medina, and R. B. Vicker, “Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications,” J. Mech. Behav. Biomed. Mater. 2, 20–32 (2009).CrossRef
76.
Zurück zum Zitat M. G. Moletsane, P. Krakhmalev, N. Kazantseva, A. Du Plessis, I. Yadroitsava, and I. Yadroitsev, “Tensile properties and microstructure of direct metal laser sintered Ti6Al4V (ELI) alloy,” S. Afr. J. Ind. Eng. 27 (3), 110–121 (2016). M. G. Moletsane, P. Krakhmalev, N. Kazantseva, A. Du Plessis, I. Yadroitsava, and I. Yadroitsev, “Tensile properties and microstructure of direct metal laser sintered Ti6Al4V (ELI) alloy,” S. Afr. J. Ind. Eng. 27 (3), 110–121 (2016).
77.
Zurück zum Zitat P. G. Partridge, “Cyclic twinning in fatigued close-packed hexagonal metals,” Philos. Mag. 12 (119), 1043–1054 (1965).CrossRef P. G. Partridge, “Cyclic twinning in fatigued close-packed hexagonal metals,” Philos. Mag. 12 (119), 1043–1054 (1965).CrossRef
78.
Zurück zum Zitat A. M. Beese and B. E. Carroll, “Review of mechanical properties of Ti–6Al–4V made by laser-based additive manufacturing using powder feedstock,” JOM 68, 724–734 (2016).CrossRef A. M. Beese and B. E. Carroll, “Review of mechanical properties of Ti–6Al–4V made by laser-based additive manufacturing using powder feedstock,” JOM 68, 724–734 (2016).CrossRef
79.
Zurück zum Zitat A. Du Plessis, I. Yadroitsava, and I. Yadroitsev, “Effects of defects on mechanical properties in metal additive manufacturing: a review focusing on X-ray tomography insights,” Mater. Des. 187, 108385 (2019).CrossRef A. Du Plessis, I. Yadroitsava, and I. Yadroitsev, “Effects of defects on mechanical properties in metal additive manufacturing: a review focusing on X-ray tomography insights,” Mater. Des. 187, 108385 (2019).CrossRef
80.
Zurück zum Zitat M. J. Donachie, Titanium: A Technical Guide (ASM Int., Materials Park, OH, 2000).CrossRef M. J. Donachie, Titanium: A Technical Guide (ASM Int., Materials Park, OH, 2000).CrossRef
81.
Zurück zum Zitat H. Rafi, N. V. Karthik, H. Gong, Th. L. Starr, and B. E. Stucker, “Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting,” J. Mater. Eng. Perform. 22, 3873–3883 (2013).CrossRef H. Rafi, N. V. Karthik, H. Gong, Th. L. Starr, and B. E. Stucker, “Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting,” J. Mater. Eng. Perform. 22, 3873–3883 (2013).CrossRef
82.
Zurück zum Zitat W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, “Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition,” Acta Mater. 85, 74–84 (2015).CrossRef W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, “Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition,” Acta Mater. 85, 74–84 (2015).CrossRef
83.
Zurück zum Zitat W. Xu, E. W. Lui, A. Pateras, M. Qian, and M. Brandt, “In situ tailoring microstructure in additively manufactured Ti–6Al–4V for superior mechanical performance,” Acta Mater. 125, 390–400 (2017).CrossRef W. Xu, E. W. Lui, A. Pateras, M. Qian, and M. Brandt, “In situ tailoring microstructure in additively manufactured Ti–6Al–4V for superior mechanical performance,” Acta Mater. 125, 390–400 (2017).CrossRef
84.
Zurück zum Zitat A. Zafari and K. Xia, “High ductility in a fully martensitic microstructure: a paradox in a Ti alloy produced by selective laser melting,” Mater. Res. Lett. 6 (11), 627–633 (2018).CrossRef A. Zafari and K. Xia, “High ductility in a fully martensitic microstructure: a paradox in a Ti alloy produced by selective laser melting,” Mater. Res. Lett. 6 (11), 627–633 (2018).CrossRef
85.
Zurück zum Zitat T. Scharowsky, V. Jüchter, R. F. Singer, and C. Körner, “Influence of the scanning strategy on the microstructure and mechanical properties in selective electron beam melting of Ti–6Al–4V,” Adv. Eng. Mater. 17, 11 (2015).CrossRef T. Scharowsky, V. Jüchter, R. F. Singer, and C. Körner, “Influence of the scanning strategy on the microstructure and mechanical properties in selective electron beam melting of Ti–6Al–4V,” Adv. Eng. Mater. 17, 11 (2015).CrossRef
86.
Zurück zum Zitat L. E. Murr, E. V. Exquivel, S. A. Quinones, S. Gaytan, M. I. Lopes, E. Y. Martinez, F. Medina, D. H. Hernandez, J. L. Martinez, S. W. Stafford, D. K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R. B. Wicker, “Microstructures and mechanical properties of electron beam rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V,” Mater. Charact. 60 (2), 96–105 (2009).CrossRef L. E. Murr, E. V. Exquivel, S. A. Quinones, S. Gaytan, M. I. Lopes, E. Y. Martinez, F. Medina, D. H. Hernandez, J. L. Martinez, S. W. Stafford, D. K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R. B. Wicker, “Microstructures and mechanical properties of electron beam rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V,” Mater. Charact. 60 (2), 96–105 (2009).CrossRef
87.
Zurück zum Zitat N. Hrabe and T. Quinn, “Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM). Part 1: distance from build plate and part size,” Mater. Sci. Eng., A 573 (20), 264–270 (2013).CrossRef N. Hrabe and T. Quinn, “Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM). Part 1: distance from build plate and part size,” Mater. Sci. Eng., A 573 (20), 264–270 (2013).CrossRef
88.
Zurück zum Zitat S. L. Lu, H. P. Tang, Y. P. Ning, N. Liu, D. H. StJohn, and M. Qian, “Microstructure and mechanical properties of long Ti–6Al–4V rods additively manufactured by selective electron beam melting out of a deep powder bed and the effect of subsequent hot isostatic pressing,” Metall. Mater. Trans. A 46, 3824–3834 (2015).CrossRef S. L. Lu, H. P. Tang, Y. P. Ning, N. Liu, D. H. StJohn, and M. Qian, “Microstructure and mechanical properties of long Ti–6Al–4V rods additively manufactured by selective electron beam melting out of a deep powder bed and the effect of subsequent hot isostatic pressing,” Metall. Mater. Trans. A 46, 3824–3834 (2015).CrossRef
89.
Zurück zum Zitat T. Vilaro, C. Colin, and J. D. Bartout, “As-fabricated and heat-treated micro-structures of the Ti–6Al–4V alloy processed by selective laser melting,” Metall. Mater. Trans. A 42 (10), 3190–3199 (2011).CrossRef T. Vilaro, C. Colin, and J. D. Bartout, “As-fabricated and heat-treated micro-structures of the Ti–6Al–4V alloy processed by selective laser melting,” Metall. Mater. Trans. A 42 (10), 3190–3199 (2011).CrossRef
90.
Zurück zum Zitat A. Mertens, S. Reginster, H. Paydas, Q. Contrepois, T. Dormal, O. Lemaire, and J. Lecomte-Beckers, “Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures,” Powder Metall. 57 (3), 184–189 (2014).CrossRef A. Mertens, S. Reginster, H. Paydas, Q. Contrepois, T. Dormal, O. Lemaire, and J. Lecomte-Beckers, “Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures,” Powder Metall. 57 (3), 184–189 (2014).CrossRef
91.
Zurück zum Zitat L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Hoges, and K. Wissenbach, “Ductility of a Ti–6Al–4V alloy produced by selective laser melting of prealloyed powders,” Rapid Prototyping J. 16 (6), 450–459 (2010).CrossRef L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Hoges, and K. Wissenbach, “Ductility of a Ti–6Al–4V alloy produced by selective laser melting of prealloyed powders,” Rapid Prototyping J. 16 (6), 450–459 (2010).CrossRef
92.
Zurück zum Zitat A. Mohammadhosseini, D. Fraser, S. H. Masood, and M. Jahedi, “Microstructure and mechanical properties of Ti–6Al–4V manufactured by electron beam melting process,” Mater. Res. Innovations 17 (2), s106–s112 (2013).CrossRef A. Mohammadhosseini, D. Fraser, S. H. Masood, and M. Jahedi, “Microstructure and mechanical properties of Ti–6Al–4V manufactured by electron beam melting process,” Mater. Res. Innovations 17 (2), s106–s112 (2013).CrossRef
93.
Zurück zum Zitat I. Yadroitsev and I. Yadroitsava, “Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting,” Virtual Phys. Prototyping 10 (2), 67–76 (2015).CrossRef I. Yadroitsev and I. Yadroitsava, “Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting,” Virtual Phys. Prototyping 10 (2), 67–76 (2015).CrossRef
94.
Zurück zum Zitat I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, and A. Du Plessis, “Qualification of Ti6Al4V ELI alloy produced by laser powder bed fusion for biomedical applications,” JOM 70, 372–377 (2018).CrossRef I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, and A. Du Plessis, “Qualification of Ti6Al4V ELI alloy produced by laser powder bed fusion for biomedical applications,” JOM 70, 372–377 (2018).CrossRef
95.
Zurück zum Zitat T. Becker, M. van Rooyen, and D. Dimitrov, “Heat treatment of Ti–6Al–4V produced by lasercusing,” S. Afr. J. Ind. Eng. 26 (2), 93–103 (2015). T. Becker, M. van Rooyen, and D. Dimitrov, “Heat treatment of Ti–6Al–4V produced by lasercusing,” S. Afr. J. Ind. Eng. 26 (2), 93–103 (2015).
96.
Zurück zum Zitat B. Vrancken, L. Thijs, J.-P. Kruth, and J. van Humbeeck, “Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties,” J. Alloys Compd. 541, 177–185 (2012).CrossRef B. Vrancken, L. Thijs, J.-P. Kruth, and J. van Humbeeck, “Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties,” J. Alloys Compd. 541, 177–185 (2012).CrossRef
97.
Zurück zum Zitat M. W. Wu and P. H. Lai, “The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti–6Al–4V alloy,” Mater. Sci. Eng., A 658, 429–438 (2016).CrossRef M. W. Wu and P. H. Lai, “The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti–6Al–4V alloy,” Mater. Sci. Eng., A 658, 429–438 (2016).CrossRef
98.
Zurück zum Zitat S. Tammas-Williams, P. J. Withers, I. Todd, and P. B. Prangnell, “The effectiveness of hot isostatic pressing for closing porosity in titanium parts manufactured by selective electron beam melting,” Metall. Mater. Trans. A 47 (5), 1939–1946 (2016).CrossRef S. Tammas-Williams, P. J. Withers, I. Todd, and P. B. Prangnell, “The effectiveness of hot isostatic pressing for closing porosity in titanium parts manufactured by selective electron beam melting,” Metall. Mater. Trans. A 47 (5), 1939–1946 (2016).CrossRef
99.
Zurück zum Zitat E. Hernández-Nava, P. Mahoney, C. J. Smith, J. Donoghue, I. Todd, and S. Tammas-Williams, “Additive manufacturing titanium components with isotropic or graded properties by hybrid electron beam melting/hot isostatic pressing powder processing,” Sci. Rep. 9, 4070 (2019).CrossRef E. Hernández-Nava, P. Mahoney, C. J. Smith, J. Donoghue, I. Todd, and S. Tammas-Williams, “Additive manufacturing titanium components with isotropic or graded properties by hybrid electron beam melting/hot isostatic pressing powder processing,” Sci. Rep. 9, 4070 (2019).CrossRef
100.
Zurück zum Zitat K.-S. Chan, “Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques,” Surf. Topogr.: Metrol. Prop. 3 (4), 044006 (2015).CrossRef K.-S. Chan, “Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques,” Surf. Topogr.: Metrol. Prop. 3 (4), 044006 (2015).CrossRef
101.
Zurück zum Zitat D. Greitemeier, C. Dalle Donne, F. Syassen, J. Eufinger, and T. Melz, “Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V,” Mater. Sci. Technol. 32 (7), 629–634 (2016).CrossRef D. Greitemeier, C. Dalle Donne, F. Syassen, J. Eufinger, and T. Melz, “Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V,” Mater. Sci. Technol. 32 (7), 629–634 (2016).CrossRef
102.
Zurück zum Zitat A. M. Vilardell, P. Krakhmalev, G. Fredriksson, F. Cabanettes, A. Sova, D. Valentin, and P. Bertrand, “Influence of surface topography on fatigue behavior of Ti6Al4V alloy by laser powder bed fusion,” Procedia CIRP 74, 49–52 (2018).CrossRef A. M. Vilardell, P. Krakhmalev, G. Fredriksson, F. Cabanettes, A. Sova, D. Valentin, and P. Bertrand, “Influence of surface topography on fatigue behavior of Ti6Al4V alloy by laser powder bed fusion,” Procedia CIRP 74, 49–52 (2018).CrossRef
103.
Zurück zum Zitat S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier, “On the mechanical behavior of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance,” Int. J. Fatigue 48, 300–307 (2013).CrossRef S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier, “On the mechanical behavior of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance,” Int. J. Fatigue 48, 300–307 (2013).CrossRef
104.
Zurück zum Zitat S. P. Burkin, G. V. Shimov, and E. A. Andryukova, Residual Stresses in Metal Products (Ural State Univ., Yekaterinburg, 2015) [in Russian]. S. P. Burkin, G. V. Shimov, and E. A. Andryukova, Residual Stresses in Metal Products (Ural State Univ., Yekaterinburg, 2015) [in Russian].
105.
Zurück zum Zitat I. van Zyl, I. Yadroitsava, and I. Yadroitsev, “Residual stress in Ti6Al4V objects produced by direct metal laser sintering,” S. Afr. J. Ind. Eng. 27 (4), 134–141 (2016). I. van Zyl, I. Yadroitsava, and I. Yadroitsev, “Residual stress in Ti6Al4V objects produced by direct metal laser sintering,” S. Afr. J. Ind. Eng. 27 (4), 134–141 (2016).
106.
Zurück zum Zitat I. I. Novikov, Theory of Thermal Treatment (Metallurgiya, Moscow, 1978) [in Russian]. I. I. Novikov, Theory of Thermal Treatment (Metallurgiya, Moscow, 1978) [in Russian].
107.
Zurück zum Zitat C. R. Knowles, T. H. Becker, and R. B. Tait, “Residual stress measurements and structural integrity implications for selective laser melted Ti–6Al–4V,” S. Afr. J. Ind. Eng. 23 (3), 119–129 (2012). C. R. Knowles, T. H. Becker, and R. B. Tait, “Residual stress measurements and structural integrity implications for selective laser melted Ti–6Al–4V,” S. Afr. J. Ind. Eng. 23 (3), 119–129 (2012).
108.
Zurück zum Zitat N. Kazantseva, I. Ezhov, N. Vinogradova, D. Davidov, A. Fefelov, A. Merkushev, M. Ilyinikh, and A. Volkov, “Comparative analysis of the structure and internal stress in TI–6AL–4V alloys manufactured by 3D printing and processing with screw extrusion,” IOP Conf. Ser.: J. Phys. 1115, 042007 (2018). N. Kazantseva, I. Ezhov, N. Vinogradova, D. Davidov, A. Fefelov, A. Merkushev, M. Ilyinikh, and A. Volkov, “Comparative analysis of the structure and internal stress in TI–6AL–4V alloys manufactured by 3D printing and processing with screw extrusion,” IOP Conf. Ser.: J. Phys. 1115, 042007 (2018).
109.
Zurück zum Zitat N. V. Kazantseva, I. V. Ezhov, N. I. Vinogradova, M. V. Il’inykh, A. S. Fefelov, D. I. Davydov, O. A. Oleneva, and M. S. Karabanalov, “Effect of built geometry on the microstructure and strength characteristics of the Ti–6Al–4V alloy prepared by the selective laser melting,” Phys. Met. Metalogr. 119, 1079–1086 (2018).CrossRef N. V. Kazantseva, I. V. Ezhov, N. I. Vinogradova, M. V. Il’inykh, A. S. Fefelov, D. I. Davydov, O. A. Oleneva, and M. S. Karabanalov, “Effect of built geometry on the microstructure and strength characteristics of the Ti–6Al–4V alloy prepared by the selective laser melting,” Phys. Met. Metalogr. 119, 1079–1086 (2018).CrossRef
110.
Zurück zum Zitat D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials 29, 2941–2953 (2008).CrossRef D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials 29, 2941–2953 (2008).CrossRef
111.
Zurück zum Zitat R. Dimitriou, E. Jones, D. McGonagle, and V. P. Giannoudis, “Bone regeneration: current concepts and future directions,” BMC Med. 9 (66), 1–10 (2011).CrossRef R. Dimitriou, E. Jones, D. McGonagle, and V. P. Giannoudis, “Bone regeneration: current concepts and future directions,” BMC Med. 9 (66), 1–10 (2011).CrossRef
112.
Zurück zum Zitat P. Silva-Bermudez and S. E. Rodil, “An overview of protein adsorption on metal oxide coatings for biomedical implants,” Surf. Coat. Technol. 233, 147–158 (2013).CrossRef P. Silva-Bermudez and S. E. Rodil, “An overview of protein adsorption on metal oxide coatings for biomedical implants,” Surf. Coat. Technol. 233, 147–158 (2013).CrossRef
113.
Zurück zum Zitat S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat. Mater. 4 (7), 518–524 (2005).CrossRef S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat. Mater. 4 (7), 518–524 (2005).CrossRef
114.
Zurück zum Zitat X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, and Y. M. Xie, “Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review,” Biomaterials 83, 127–141 (2016).CrossRef X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, and Y. M. Xie, “Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review,” Biomaterials 83, 127–141 (2016).CrossRef
115.
Zurück zum Zitat A. Nouri, P. D. Hodgson, and S. U. Wen, “Effect of process control agent on the porous structure and mechanical properties of biomedical Ti–Sn–Nb alloy produced by powder metallurgy,” Acta Biomater. 6, 1630–1639 (2010).CrossRef A. Nouri, P. D. Hodgson, and S. U. Wen, “Effect of process control agent on the porous structure and mechanical properties of biomedical Ti–Sn–Nb alloy produced by powder metallurgy,” Acta Biomater. 6, 1630–1639 (2010).CrossRef
116.
Zurück zum Zitat A. Du Plessis, I. Yadroitsava, and I. Yadroitsev, “Ti–6Al–4V lightweight lattice structures manufactured by laser powder bed fusion for load-bearing applications,” Opt. Laser Technol. 108, 521–528 (2018).CrossRef A. Du Plessis, I. Yadroitsava, and I. Yadroitsev, “Ti–6Al–4V lightweight lattice structures manufactured by laser powder bed fusion for load-bearing applications,” Opt. Laser Technol. 108, 521–528 (2018).CrossRef
117.
Zurück zum Zitat I. Yadroitsava, A. Du Plessis, and I. Yadroitsev, “Bone regeneration on implants of titanium alloys produced by laser powder bed fusion: a review,” in Titanium for Consumer Applications. Real World Use of Titanium, Ed. by F. Froes, M. Qian, and M. Niinomi (Elsevier, Amsterdam, 2019), pp. 197–233. I. Yadroitsava, A. Du Plessis, and I. Yadroitsev, “Bone regeneration on implants of titanium alloys produced by laser powder bed fusion: a review,” in Titanium for Consumer Applications. Real World Use of Titanium, Ed. by F. Froes, M. Qian, and M. Niinomi (Elsevier, Amsterdam, 2019), pp. 197–233.
118.
Zurück zum Zitat N. Eliaz, “Corrosion of metallic biomaterials: a review,” Materials (Basel) 12 (3), 407 (2019).CrossRef N. Eliaz, “Corrosion of metallic biomaterials: a review,” Materials (Basel) 12 (3), 407 (2019).CrossRef
119.
Zurück zum Zitat D. Mahmoud and M. A. Elbestawi, “Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review,” J. Manuf. Mater. Process. 1 (2), 1–19 (2017). D. Mahmoud and M. A. Elbestawi, “Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review,” J. Manuf. Mater. Process. 1 (2), 1–19 (2017).
120.
Zurück zum Zitat G. Epasto, G. Palomba, D. D’Andrea, E. Guglielmino, S. Di Bella, and F. Traina, “Ti–6Al–4V ELI microlattice structures manufactured by electron beam melting: Effect of unit cell dimensions and morphology on mechanical behavior,” Mater. Sci. Eng., A 753, 31–41 (2019).CrossRef G. Epasto, G. Palomba, D. D’Andrea, E. Guglielmino, S. Di Bella, and F. Traina, “Ti–6Al–4V ELI microlattice structures manufactured by electron beam melting: Effect of unit cell dimensions and morphology on mechanical behavior,” Mater. Sci. Eng., A 753, 31–41 (2019).CrossRef
121.
Zurück zum Zitat S. Y. Choy, C. N. Sun, K. F. Leong, and J. Wei, “Compressive properties of Ti–6Al–4V lattice structures fabricated by selective laser melting: design, orientation and density,” Addit. Manuf. 16, 213–224 (2017). S. Y. Choy, C. N. Sun, K. F. Leong, and J. Wei, “Compressive properties of Ti–6Al–4V lattice structures fabricated by selective laser melting: design, orientation and density,” Addit. Manuf. 16, 213–224 (2017).
122.
Zurück zum Zitat S. Zhao, S. J. Li, W. T. Hou, Y. L. Hao, R. Yang, and R. D. K. Misra, “The influence of cell morphology on the compressive fatigue behavior of Ti–6Al–4V meshes fabricated by electron beam melting,” J. Mech. Behav. Biomed. Mater. 59, 251–264 (2016).CrossRef S. Zhao, S. J. Li, W. T. Hou, Y. L. Hao, R. Yang, and R. D. K. Misra, “The influence of cell morphology on the compressive fatigue behavior of Ti–6Al–4V meshes fabricated by electron beam melting,” J. Mech. Behav. Biomed. Mater. 59, 251–264 (2016).CrossRef
Metadaten
Titel
Laser Additive 3D Printing of Titanium Alloys: Current Status, Problems, Trends
verfasst von
N. V. Kazantseva
P. V. Krakhmalev
I. A. Yadroitsava
I. A. Yadroitsev
Publikationsdatum
01.01.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 1/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21010063

Weitere Artikel der Ausgabe 1/2021

Physics of Metals and Metallography 1/2021 Zur Ausgabe