Skip to main content

2018 | Supplement | Buchkapitel

3. Laser Metal Deposition Process, Solidification Mechanism and Microstructure Formation

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Laser metal deposition process is an advanced manufacturing process that can be used to fabricate three dimensional (3D) parts from the 3D computer aided design (CAD) model of such parts by adding materials in layers. The CAD digital data of the part is used to generate a motion controlled computer program that is used to control the movement of a laser which then trace all profile of the CAD by injecting the material into the laser focal region of the laser, melted and solidify to form a fully dense track through a moving molten pool that is created by the laser. Tracks and layers are stacked in order to produce the entire component of fused metal that represents the desired 3D CAD object. An important characteristics of this manufacturing process apart from creating a 3D object is its ability to repair high valued parts. Aerospace industry in particular has benefited greatly from this important technology. In this chapter, the detailed process description with the various steps involved in the manufacturing process are explained. The solidification process in the laser metal deposition process with the mechanism of microstructural evolution during this process that give materials processed using this technology, unique properties are also explained in detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2014) Evolutionary additive manufacturing: an overview. Lasers Eng 27:161–178 Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2014) Evolutionary additive manufacturing: an overview. Lasers Eng 27:161–178
3.
Zurück zum Zitat Petrat T, Graf B, Gumenyuk A, Rethmeier M (2016) Laser metal deposition as repair technology for a gas turbine burner made of inconel 718. Phys Procedia 83:761–768CrossRef Petrat T, Graf B, Gumenyuk A, Rethmeier M (2016) Laser metal deposition as repair technology for a gas turbine burner made of inconel 718. Phys Procedia 83:761–768CrossRef
4.
Zurück zum Zitat Nie Z, Wang G, McGuffin-Cawley JD, Narayanan B, Zhang S, Schwam D, Kottman M (2016) Yiming (Kevin) Rong, experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing. J Mater Process Technol 235:171–186CrossRef Nie Z, Wang G, McGuffin-Cawley JD, Narayanan B, Zhang S, Schwam D, Kottman M (2016) Yiming (Kevin) Rong, experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing. J Mater Process Technol 235:171–186CrossRef
5.
Zurück zum Zitat Abe T, Sasahara H (2016) Dissimilar metal deposition with a stainless steel and nickel-based alloy using wire and arc-based additive manufacturing. Precision Eng 45:387–395CrossRef Abe T, Sasahara H (2016) Dissimilar metal deposition with a stainless steel and nickel-based alloy using wire and arc-based additive manufacturing. Precision Eng 45:387–395CrossRef
6.
Zurück zum Zitat Li F, Gao Z, Li L, Chen Y (2016) Microstructural study of MMC layers produced by combining wire and coaxial WC powder feeding in laser direct metal deposition. Opt Laser Technol 77:134–143CrossRef Li F, Gao Z, Li L, Chen Y (2016) Microstructural study of MMC layers produced by combining wire and coaxial WC powder feeding in laser direct metal deposition. Opt Laser Technol 77:134–143CrossRef
7.
Zurück zum Zitat Åkerfeldt P, Antti M-L, Pederson R (2016) Influence of microstructure on mechanical properties of laser metal wire-deposited Ti-6Al-4V. Mater Sci Eng A 674(30):428–437CrossRef Åkerfeldt P, Antti M-L, Pederson R (2016) Influence of microstructure on mechanical properties of laser metal wire-deposited Ti-6Al-4V. Mater Sci Eng A 674(30):428–437CrossRef
8.
Zurück zum Zitat Naebe M, Shirvanimoghaddam K (2016) Functionally graded materials: a review of fabrication and properties. Appl Mater Today 5:223–245CrossRef Naebe M, Shirvanimoghaddam K (2016) Functionally graded materials: a review of fabrication and properties. Appl Mater Today 5:223–245CrossRef
9.
Zurück zum Zitat Shah K, Haq I ul, Khan A, Shah SA, Khan M, Pinkerton AJ (2014) Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition. Mater Des (1980–2015) 54:531–538 Shah K, Haq I ul, Khan A, Shah SA, Khan M, Pinkerton AJ (2014) Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition. Mater Des (1980–2015) 54:531–538
10.
Zurück zum Zitat Mahamood RM, Akinlabi ET (2015) Laser metal deposition of functionally graded Ti6Al4V/TiC. Mater Des 84(5):402–410CrossRef Mahamood RM, Akinlabi ET (2015) Laser metal deposition of functionally graded Ti6Al4V/TiC. Mater Des 84(5):402–410CrossRef
11.
Zurück zum Zitat Carroll BE, Otis RA, Borgonia JP, Suh J, Peter Dillon R, Shapiro AA, Hofmann DC, Liu Z-K, Beese AM (2016) Functionally graded material of 304L stainless steel and Inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling. Acta Materialia 108:46–54 Carroll BE, Otis RA, Borgonia JP, Suh J, Peter Dillon R, Shapiro AA, Hofmann DC, Liu Z-K, Beese AM (2016) Functionally graded material of 304L stainless steel and Inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling. Acta Materialia 108:46–54
12.
Zurück zum Zitat Gibson I, Stucker B, Rosen DW (2009) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, New York Gibson I, Stucker B, Rosen DW (2009) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, New York
13.
Zurück zum Zitat Wang ZM, Ezugwu EO (1997) Titanium alloys and their machinability a review. J Mater Process Technol 68:262–270CrossRef Wang ZM, Ezugwu EO (1997) Titanium alloys and their machinability a review. J Mater Process Technol 68:262–270CrossRef
14.
Zurück zum Zitat Brandl E, Michailov V, Viehweger B, Leyens C (2011) Deposition of Ti–6Al–4V using laser and wire, part I: microstructural properties of single beads. Surf Coat Technol 206:1120–1129CrossRef Brandl E, Michailov V, Viehweger B, Leyens C (2011) Deposition of Ti–6Al–4V using laser and wire, part I: microstructural properties of single beads. Surf Coat Technol 206:1120–1129CrossRef
15.
Zurück zum Zitat Mahamood RM, Akinlabi ET (2016) Achieving mass customization through additive manufacturing. In: Schlick C, Trzcieliński S (eds) Advances in ergonomics of manufacturing: managing the enterprise of the future. Springer International Publishing Switzerland, pp 385–390 Mahamood RM, Akinlabi ET (2016) Achieving mass customization through additive manufacturing. In: Schlick C, Trzcieliński S (eds) Advances in ergonomics of manufacturing: managing the enterprise of the future. Springer International Publishing Switzerland, pp 385–390
16.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Scanning velocity influence on microstructure, microhardness and wear resistance performance on laser deposited Ti6Al4V/TiC composite. Mater Des 50:656–666CrossRef Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Scanning velocity influence on microstructure, microhardness and wear resistance performance on laser deposited Ti6Al4V/TiC composite. Mater Des 50:656–666CrossRef
17.
Zurück zum Zitat Boboulos MA (2010) CAD-CAM & rapid prototyping application evaluation. PhD &Ventus Publishing Aps. Available from: www.bookBoom.com. Accessed online on 1st December 2011 Boboulos MA (2010) CAD-CAM & rapid prototyping application evaluation. PhD &Ventus Publishing Aps. Available from: www.​bookBoom.​com. Accessed online on 1st December 2011
18.
Zurück zum Zitat Song J, Deng Q, Chen C, Hu D, Li Y (2006) Rebuilding of metal components with laser cladding forming. Appl Surface Sci 252:7934–7940CrossRef Song J, Deng Q, Chen C, Hu D, Li Y (2006) Rebuilding of metal components with laser cladding forming. Appl Surface Sci 252:7934–7940CrossRef
19.
Zurück zum Zitat Mahamood RM, kinlabi ET, Shukla M, Pityana S (2014) Effect of processing parameters on the properties of laser metal deposited Ti6Al4V using design of experiment. In: Ao S-I, Chan AH-S, Katagiri H, Xu L (eds) Transactions on engineering sciences. Taylor & Francis Group, London, pp 331 –339. doi:10.1201/b16763-37 Mahamood RM, kinlabi ET, Shukla M, Pityana S (2014) Effect of processing parameters on the properties of laser metal deposited Ti6Al4V using design of experiment. In: Ao S-I, Chan AH-S, Katagiri H, Xu L (eds) Transactions on engineering sciences. Taylor & Francis Group, London, pp 331 –339. doi:10.​1201/​b16763-37
20.
Zurück zum Zitat Wu X, Liang J, Mei J, Mitchell C, Goodwin PS, Voice W (2004) Microstructures of laser-deposited Ti–6Al–4V. Mater Des 25(2):137–144CrossRef Wu X, Liang J, Mei J, Mitchell C, Goodwin PS, Voice W (2004) Microstructures of laser-deposited Ti–6Al–4V. Mater Des 25(2):137–144CrossRef
21.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Characterizing the effect of laser power density on microstructure, microhardness and surface finish of laser deposited titanium alloy. J Manuf Sci Eng 135(6):064502-064502-4. doi:10.1115/1.4025737 Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Characterizing the effect of laser power density on microstructure, microhardness and surface finish of laser deposited titanium alloy. J Manuf Sci Eng 135(6):064502-064502-4. doi:10.​1115/​1.​4025737
22.
Zurück zum Zitat Brody HD (1986) Segregation and structure in the weld zone. In: Proceedings of advances in welding science and technology, Gatlinburg, Tennessee, USA, pp 83–91 Brody HD (1986) Segregation and structure in the weld zone. In: Proceedings of advances in welding science and technology, Gatlinburg, Tennessee, USA, pp 83–91
23.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Akinlabi SA (2014) Laser power and scanning speed influence on the mechanical property of laser metal deposited titanium-alloy. Lasers Manuf Mater Process 2(1):43–55CrossRef Mahamood RM, Akinlabi ET, Akinlabi SA (2014) Laser power and scanning speed influence on the mechanical property of laser metal deposited titanium-alloy. Lasers Manuf Mater Process 2(1):43–55CrossRef
24.
Zurück zum Zitat Kobryn PA, Moore EH, Semiatin SL (2000) The effect of laser power and traverse speed on microstructure, porosity and build height in laser-deposited Ti-6Al-4V. Scripta Materiala 43(4):299–305CrossRef Kobryn PA, Moore EH, Semiatin SL (2000) The effect of laser power and traverse speed on microstructure, porosity and build height in laser-deposited Ti-6Al-4V. Scripta Materiala 43(4):299–305CrossRef
25.
26.
Zurück zum Zitat Chen Y, Wang HM (2003) Growth morphology and mechanism of primary TiC carbide in laser clad TiC/FeAl composite coating. Mater Lett 57:1233–1238CrossRef Chen Y, Wang HM (2003) Growth morphology and mechanism of primary TiC carbide in laser clad TiC/FeAl composite coating. Mater Lett 57:1233–1238CrossRef
27.
Zurück zum Zitat Cao S, Gu D, Shi Q (2017) Relation of microstructure, microhardness and underlying thermodynamics in molten pools of laser melting deposition processed TiC/Inconel 625 composites. J Alloys Compd 692:758e769 Cao S, Gu D, Shi Q (2017) Relation of microstructure, microhardness and underlying thermodynamics in molten pools of laser melting deposition processed TiC/Inconel 625 composites. J Alloys Compd 692:758e769
28.
Zurück zum Zitat Åkerfeldt P, Antti M-L, Pederson R (2016) Influence of microstructure on mechanical properties of laser metal wire-deposited Ti-6Al-4V. Mater Sci Eng A 674:428–437 Åkerfeldt P, Antti M-L, Pederson R (2016) Influence of microstructure on mechanical properties of laser metal wire-deposited Ti-6Al-4V. Mater Sci Eng A 674:428–437
29.
Zurück zum Zitat Zhang YZ, Liu YT, Zhao XH, Tang YJ (2016) The interface microstructure and tensile properties of direct energy deposited TC11/Ti2AlNb dual alloy. Mater Des 110:571–580CrossRef Zhang YZ, Liu YT, Zhao XH, Tang YJ (2016) The interface microstructure and tensile properties of direct energy deposited TC11/Ti2AlNb dual alloy. Mater Des 110:571–580CrossRef
30.
Zurück zum Zitat Yadollahi A, Shamsaei N, Thompson SM, Seely DW (2015) Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng, A 644:171–183CrossRef Yadollahi A, Shamsaei N, Thompson SM, Seely DW (2015) Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng, A 644:171–183CrossRef
31.
Zurück zum Zitat Ren H, Tian X-J, Liu D, Liu J, Wang H (2015) Microstructural evolution and mechanical properties of laser melting deposited Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy. Trans Nonferrous Met Soc China 25:1856–1864CrossRef Ren H, Tian X-J, Liu D, Liu J, Wang H (2015) Microstructural evolution and mechanical properties of laser melting deposited Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy. Trans Nonferrous Met Soc China 25:1856–1864CrossRef
32.
Zurück zum Zitat Zhong C, Gasser A, Kittel J, Wissenbach K, Poprawe R (2016) Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition. Mater Des 98:128–134CrossRef Zhong C, Gasser A, Kittel J, Wissenbach K, Poprawe R (2016) Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition. Mater Des 98:128–134CrossRef
33.
Zurück zum Zitat Pityana R. M. Mahamood, E. T. Akinlabi, and M. Shukla, (2013). Effect of powder flow rate and gas flow rate on properties of laser metal deposited Ti6Al4V. 2013 In: International multi-conference of engineering and computer science (IMECS 2013), March 2013, pp 848–851 Pityana R. M. Mahamood, E. T. Akinlabi, and M. Shukla, (2013). Effect of powder flow rate and gas flow rate on properties of laser metal deposited Ti6Al4V. 2013 In: International multi-conference of engineering and computer science (IMECS 2013), March 2013, pp 848–851
34.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Characterizing the effect of processing parameters on the porosity properties of laser deposited titanium alloy. In: International multi-conference of engineering and computer science (IMECS 2014) Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Characterizing the effect of processing parameters on the porosity properties of laser deposited titanium alloy. In: International multi-conference of engineering and computer science (IMECS 2014)
35.
Zurück zum Zitat Mahamood RM, Akinlabi ET (2016) Laser power and scanning speed influence on intermetallic and wear behaviour of laser metal deposited titanium alloy composite. In: WCECS 2016 Mahamood RM, Akinlabi ET (2016) Laser power and scanning speed influence on intermetallic and wear behaviour of laser metal deposited titanium alloy composite. In: WCECS 2016
36.
Zurück zum Zitat Mahamood RM, Akinlabi ET (2015) Effect of processing parameters on wear resistance property of laser material deposited titanium-alloy composite. J Optoelectron Adv Mater (JOAM) 17(9–10):1348–1360 Mahamood RM, Akinlabi ET (2015) Effect of processing parameters on wear resistance property of laser material deposited titanium-alloy composite. J Optoelectron Adv Mater (JOAM) 17(9–10):1348–1360
37.
Zurück zum Zitat Mahamood RM, Akinlabi ET (2015) Effect of laser power and powder flow rate on the wear resistance behaviour of laser metal deposited TiC/Ti6Al4V composites. Mater Today Proc 2(4–5):2679–2686CrossRef Mahamood RM, Akinlabi ET (2015) Effect of laser power and powder flow rate on the wear resistance behaviour of laser metal deposited TiC/Ti6Al4V composites. Mater Today Proc 2(4–5):2679–2686CrossRef
38.
Zurück zum Zitat Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2014) Characterization of laser deposited Ti6A4V/TiC composite. Lasers Eng 29(3–4):197–213 Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2014) Characterization of laser deposited Ti6A4V/TiC composite. Lasers Eng 29(3–4):197–213
Metadaten
Titel
Laser Metal Deposition Process, Solidification Mechanism and Microstructure Formation
verfasst von
R. M. Mahamood
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-64985-6_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.