Skip to main content

2022 | OriginalPaper | Buchkapitel

Learning Centrality by Learning to Route

verfasst von : Liav Bachar, Aviad Elyashar, Rami Puzis

Erschienen in: Complex Networks & Their Applications X

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Developing a tailor-made centrality measure for a given task requires domain and network analysis expertise, as well as time and effort. Automatically learning arbitrary centrality measures provided ground truth node scores is an important research direction. In this article, we propose a generic deep learning architecture for centrality learning that relies on the insight that arbitrary centrality measures can be computed using Routing Betweenness Centrality (RBC) and our new differentiable implementation of RBC. The proposed Learned Routing Centrality (LRC) architecture optimizes the routing function of RBC to fit the ground truth scores. Results show that LRC can learn multiple types of centrality indices more accurately than state-of-the-art.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tubi, M., Puzis, R., Elovici, Y.: Deployment of DNIDS in social networks. In: 2007 IEEE ISI, pp. 59–65. IEEE (2007) Tubi, M., Puzis, R., Elovici, Y.: Deployment of DNIDS in social networks. In: 2007 IEEE ISI, pp. 59–65. IEEE (2007)
2.
Zurück zum Zitat Puzis, R., Yagil, D., Elovici, Y., Braha, D.: Collaborative attack on internet users’ anonymity. Internet Res. 19(1), 60–77 (2009)CrossRef Puzis, R., Yagil, D., Elovici, Y., Braha, D.: Collaborative attack on internet users’ anonymity. Internet Res. 19(1), 60–77 (2009)CrossRef
3.
Zurück zum Zitat Kandhway, K., Kuri, J.: Using node centrality and optimal control to maximize information diffusion in social networks. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1099–1110 (2017)CrossRef Kandhway, K., Kuri, J.: Using node centrality and optimal control to maximize information diffusion in social networks. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1099–1110 (2017)CrossRef
5.
Zurück zum Zitat Qi, X., Fuller, E., Qin, W., Yezhou, W., Zhang, C.-Q.: Laplacian centrality: a new centrality measure for weighted networks. Inf. Sci. 194, 240–253 (2012)MathSciNetCrossRefMATH Qi, X., Fuller, E., Qin, W., Yezhou, W., Zhang, C.-Q.: Laplacian centrality: a new centrality measure for weighted networks. Inf. Sci. 194, 240–253 (2012)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:​1609.​02907 (2016)
8.
Zurück zum Zitat Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on NIPS, pp. 1025–1035 (2017) Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on NIPS, pp. 1025–1035 (2017)
9.
Zurück zum Zitat Lamb, L.C., Grando, F., Granville, L.Z.: Machine learning in network centrality measures: tutorial and outlook. ACM Comput. Surv. 51(5), 1–32 (2018). Article 102 Lamb, L.C., Grando, F., Granville, L.Z.: Machine learning in network centrality measures: tutorial and outlook. ACM Comput. Surv. 51(5), 1–32 (2018). Article 102
10.
Zurück zum Zitat Mendonça, M.R.F., Barreto, A., Ziviani, A.: Approximating network centrality measures using node embedding and machine learning. ACM 57 (2020) Mendonça, M.R.F., Barreto, A., Ziviani, A.: Approximating network centrality measures using node embedding and machine learning. ACM 57 (2020)
12.
Zurück zum Zitat Maurya, S.K., Liu, X., Murata, T.: Graph neural networks for fast node ranking approximation. TKDD 15(5), 1–32 (2021)CrossRef Maurya, S.K., Liu, X., Murata, T.: Graph neural networks for fast node ranking approximation. TKDD 15(5), 1–32 (2021)CrossRef
13.
Zurück zum Zitat Puzis, R., Dolev, S., Elovici, Y.: Routing betweenness centrality. In: Routing Betweenness Centrality, p. 27. IEEE (2010) Puzis, R., Dolev, S., Elovici, Y.: Routing betweenness centrality. In: Routing Betweenness Centrality, p. 27. IEEE (2010)
14.
Zurück zum Zitat Anthonisse, J.M.: The rush in a directed graph. Technical report BN 9/71. Stichting Mathematisch Centrum, Amsterdam, The Netherlands (1971) Anthonisse, J.M.: The rush in a directed graph. Technical report BN 9/71. Stichting Mathematisch Centrum, Amsterdam, The Netherlands (1971)
15.
Zurück zum Zitat Newman, M.E.J.: Scientific collaboration networks. II. shortest paths, weighted networks, and centrality. Phys. Rev. E 64(1), 016132 (2001)CrossRef Newman, M.E.J.: Scientific collaboration networks. II. shortest paths, weighted networks, and centrality. Phys. Rev. E 64(1), 016132 (2001)CrossRef
17.
Zurück zum Zitat Fan, C., Zeng, L., Ding, Y., Chen, M., Sun, Y., Liu, Z.: Learning to identify high betweenness centrality nodes from scratch: a novel graph neural network approach. In: CIKM, pp. 559–568 (2019) Fan, C., Zeng, L., Ding, Y., Chen, M., Sun, Y., Liu, Z.: Learning to identify high betweenness centrality nodes from scratch: a novel graph neural network approach. In: CIKM, pp. 559–568 (2019)
18.
Zurück zum Zitat Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)CrossRefMATH Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)CrossRefMATH
19.
Zurück zum Zitat Haveliwala, T., Kamvar, S., Klein, D., Manning, C., Golub, G.: Computing PageRank using power extrapolation. Technical report, Stanford (2003) Haveliwala, T., Kamvar, S., Klein, D., Manning, C., Golub, G.: Computing PageRank using power extrapolation. Technical report, Stanford (2003)
20.
21.
Zurück zum Zitat Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: CCCG. Citeseer (1999) Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: CCCG. Citeseer (1999)
22.
Zurück zum Zitat SciPy community: Statistical functions (scipy.stats) SciPy community: Statistical functions (scipy.stats)
Metadaten
Titel
Learning Centrality by Learning to Route
verfasst von
Liav Bachar
Aviad Elyashar
Rami Puzis
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-93409-5_21

Premium Partner