Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.07.2020 | Regular Paper | Ausgabe 10/2020

Knowledge and Information Systems 10/2020

Learning sequence-to-sequence affinity metric for near-online multi-object tracking

Zeitschrift:
Knowledge and Information Systems > Ausgabe 10/2020
Autoren:
Weijiang Feng, Long Lan, Xiang Zhang, Zhigang Luo
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In this paper, we propose a sequence-to-sequence affinity metric for the data association of near-online multi-object tracking. The proposed metric learns the affinity between track sequence consisting of the already associated detections and hypothesis sequence consisting of detections in the near future. With the potential hypothesis sequences, we leverage the idea that if a track sequence has a high affinity for a hypothesis sequence, and the hypothesis sequence also shares a close affinity for a current detection, then the affinity between the track sequence and the detection is high. By using the short hypothesis sequence as a “bridge”, the proposed sequence-to-sequence affinity metric enhances the conventional track sequence to detection affinity metric and improves its robustness to object occlusion and missing. Besides, in order to eliminate the negative effects of false alarms, we propose a false alarm model using both appearance and scale features of detection. The robustness of the proposed affinity metric allows us to use a simple greedy data association algorithm. Experimental results on the challenging MOT16 and MOT17 benchmarks demonstrate the effectiveness of our method.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2020

Knowledge and Information Systems 10/2020 Zur Ausgabe

Premium Partner