Skip to main content
Erschienen in: Wireless Personal Communications 3/2020

23.01.2020

Lifetime Enhancement of a WSN Through Duty Cycle in an Aggregation Based Cooperative MIMO Framework

verfasst von: Sarah Asheer, Sanjeet Kumar

Erschienen in: Wireless Personal Communications | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Duty cycle is a well-known approach for energy saving as well as life time enhancement of a wireless sensor network having scarce energy resources. In this paper, we have achieved energy savings by introducing duty cycle in an aggregation based cooperative-MIMO (CMIMO) framework. In the proposed CMIMO framework, instead of opting for the complete centralized or distributed approach, an optimum number of node performs aggregation and long haul transmissions which not only saves energy but also increases the reliability of the network. The aggregator and the long haul link nodes are selected based on the residual energy level. The role of a node to behave as an aggregator and/or long haul link node is rotated after certain number of rounds and duty cycle is implemented accordingly. This ensures load balancing which eventually leads to lifetime enhancement. The effect of varying the cluster size, the number of aggregator nodes and the long haul links on the average energy consumption have also been analysed. The result shows that by introducing duty cycle in an aggregation based framework contributes to a significant amount of energy savings. On an average 42.50% of energy is saved in the proposed framework when compared CMIMO without any data aggregation. And this energy saving is up to 99% when compared to the conventional single node transmission.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews,55, 1041–1054.CrossRef Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews,55, 1041–1054.CrossRef
2.
Zurück zum Zitat Raghunathan, V., Schurghers, C., Park, S., & Srivastava, M. (2002). Energy-aware wireless micro sensor networks. IEEE Signal Processing Magazine,19, 40–50.CrossRef Raghunathan, V., Schurghers, C., Park, S., & Srivastava, M. (2002). Energy-aware wireless micro sensor networks. IEEE Signal Processing Magazine,19, 40–50.CrossRef
3.
Zurück zum Zitat Jain, S., Shah, R., Brunette, W., Borriello, G., & Roy, S. (2006). Exploiting mobility for energy efficient data collection in wireless sensor networks. ACM/Springer Mobile Networks and Applications,11, 327–339.CrossRef Jain, S., Shah, R., Brunette, W., Borriello, G., & Roy, S. (2006). Exploiting mobility for energy efficient data collection in wireless sensor networks. ACM/Springer Mobile Networks and Applications,11, 327–339.CrossRef
4.
Zurück zum Zitat Pawar, P. M., Nielsen, R. H., Prasad, N. R., & Prasad, R. (2014). Mobility impact on cluster based mac layer protocols in wireless sensor networks. Wireless Personal Communications,74(4), 1213–1229.CrossRef Pawar, P. M., Nielsen, R. H., Prasad, N. R., & Prasad, R. (2014). Mobility impact on cluster based mac layer protocols in wireless sensor networks. Wireless Personal Communications,74(4), 1213–1229.CrossRef
5.
Zurück zum Zitat Gao, Q., Zuo, Y., Zhang, J., & Peng, X. H. (2010). Improving energy efficiency in a wireless sensor network by combining cooperative MIMO with data aggregation. IEEE Transactions on Vehicular Communications,59(8), 3956–3965.CrossRef Gao, Q., Zuo, Y., Zhang, J., & Peng, X. H. (2010). Improving energy efficiency in a wireless sensor network by combining cooperative MIMO with data aggregation. IEEE Transactions on Vehicular Communications,59(8), 3956–3965.CrossRef
6.
Zurück zum Zitat Xu, Y., Heidemann, J., & Estrin D. (2001). Geography-informed energy conservation for ad hoc routing. In Proceedings of the 7th annual international conference on mobile computing and networking (pp. 70–84). Xu, Y., Heidemann, J., & Estrin D. (2001). Geography-informed energy conservation for ad hoc routing. In Proceedings of the 7th annual international conference on mobile computing and networking (pp. 70–84).
7.
Zurück zum Zitat Deosarkar, B. P., Yadav, N. S., & Yadav, R. P. (2008). Cluster head selection in clustering algorithms for wireless sensor networks: A survey. In IEEE: international conference on computing, communication and networking (pp. 1–8). Deosarkar, B. P., Yadav, N. S., & Yadav, R. P. (2008). Cluster head selection in clustering algorithms for wireless sensor networks: A survey. In IEEE: international conference on computing, communication and networking (pp. 1–8).
8.
Zurück zum Zitat Sengottuvelan, P., & Prasath, N. (2017). BAFSA: Breeding artificial fish swarm algorithm for optimal cluster head selection in wireless sensor networks. Wireless Personal Communications,94(4), 1979–1991.CrossRef Sengottuvelan, P., & Prasath, N. (2017). BAFSA: Breeding artificial fish swarm algorithm for optimal cluster head selection in wireless sensor networks. Wireless Personal Communications,94(4), 1979–1991.CrossRef
9.
Zurück zum Zitat Jia, D., Zhu, H., Zou, S., & Hu, P. (2015). Dynamic cluster head selection method for wireless sensor network. IEEE Sensors Journal,16(8), 2746–2754.CrossRef Jia, D., Zhu, H., Zou, S., & Hu, P. (2015). Dynamic cluster head selection method for wireless sensor network. IEEE Sensors Journal,16(8), 2746–2754.CrossRef
10.
Zurück zum Zitat Nguyen, V. D., Nguyen, C. T., & Shin, O. S. (2016). Energy harvesting for throughput enhancement of cooperative wireless sensor networks. International Journal of Distributed Sensor Networks,12(7), 1962397.CrossRef Nguyen, V. D., Nguyen, C. T., & Shin, O. S. (2016). Energy harvesting for throughput enhancement of cooperative wireless sensor networks. International Journal of Distributed Sensor Networks,12(7), 1962397.CrossRef
11.
Zurück zum Zitat Bahbahani, M. S., & Alsusa, E. (2017). A cooperative clustering protocol with duty cycling for energy harvesting enabled wireless sensor networks. IEEE Transactions on Wireless Communications,17(1), 101–111.CrossRef Bahbahani, M. S., & Alsusa, E. (2017). A cooperative clustering protocol with duty cycling for energy harvesting enabled wireless sensor networks. IEEE Transactions on Wireless Communications,17(1), 101–111.CrossRef
12.
Zurück zum Zitat Chen, Z., Ma, M., Liu, X., Liu, A., & Zhao, M. (2017). Reliability improved cooperative communication over wireless sensor networks. Symmetry,9(10), 209.CrossRef Chen, Z., Ma, M., Liu, X., Liu, A., & Zhao, M. (2017). Reliability improved cooperative communication over wireless sensor networks. Symmetry,9(10), 209.CrossRef
13.
Zurück zum Zitat Dohler, M., Said, F., Ghorashi, A., & Aghvami, H. (2001). Improvements in or relating to electronic data communication systems. Publication No. WO 03/003672, priority date 28 June 2001. Dohler, M., Said, F., Ghorashi, A., & Aghvami, H. (2001). Improvements in or relating to electronic data communication systems. Publication No. WO 03/003672, priority date 28 June 2001.
14.
Zurück zum Zitat Laneman, J. N. (2003). Distributed space time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory,49(10), 2415–2425.MathSciNetCrossRef Laneman, J. N. (2003). Distributed space time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory,49(10), 2415–2425.MathSciNetCrossRef
15.
Zurück zum Zitat Cui, S., Goldsmith, A. J., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas Communications,44(6), 1089–1098.CrossRef Cui, S., Goldsmith, A. J., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas Communications,44(6), 1089–1098.CrossRef
16.
Zurück zum Zitat Cui, S., & Goldsmith, A. J. (2006). Cross-layer design of energy constrained networks using cooperative MIMO techniques. EURASIP Journal of Applied Signal Processing,86(8), 1804–1814.MATH Cui, S., & Goldsmith, A. J. (2006). Cross-layer design of energy constrained networks using cooperative MIMO techniques. EURASIP Journal of Applied Signal Processing,86(8), 1804–1814.MATH
17.
Zurück zum Zitat Kanthimathi, M., Amutha, R., & Kumar, K. S. (2018). Energy efficient differential cooperative MIMO algorithm for wireless sensor network. Wireless Personal Communications,103(4), 2715–2728.CrossRef Kanthimathi, M., Amutha, R., & Kumar, K. S. (2018). Energy efficient differential cooperative MIMO algorithm for wireless sensor network. Wireless Personal Communications,103(4), 2715–2728.CrossRef
18.
Zurück zum Zitat Abbasi-Daresari, S., & Abouei, J. (2016). Toward cluster-based weighted compressive data aggregation in wireless sensor networks. Ad Hoc Networks,36, 368–385.CrossRef Abbasi-Daresari, S., & Abouei, J. (2016). Toward cluster-based weighted compressive data aggregation in wireless sensor networks. Ad Hoc Networks,36, 368–385.CrossRef
19.
Zurück zum Zitat Krishnan, A. M., & Kumar, P. G. (2016). An effective clustering approach with data aggregation using multiple mobile sinks for heterogeneous WSN. Wireless Personal Communications,90(2), 423–434.CrossRef Krishnan, A. M., & Kumar, P. G. (2016). An effective clustering approach with data aggregation using multiple mobile sinks for heterogeneous WSN. Wireless Personal Communications,90(2), 423–434.CrossRef
20.
Zurück zum Zitat Mantri, D. S., Prasad, N. R., & Prasad, R. (2015). Bandwidth efficient cluster-based data aggregation for wireless sensor network. Computers and Electrical Engineering,41, 256–264.CrossRef Mantri, D. S., Prasad, N. R., & Prasad, R. (2015). Bandwidth efficient cluster-based data aggregation for wireless sensor network. Computers and Electrical Engineering,41, 256–264.CrossRef
21.
Zurück zum Zitat Shabaneh, A. A., Ali, A. M., Ng, C. K., Noordin, N. K., Sali, A., & Yaacob, M. H. (2014). Review of energy conservation using duty cycling schemes for IEEE 802.15. 4 wireless sensor network (WSN). Wireless Personal Communications,77(1), 589–604.CrossRef Shabaneh, A. A., Ali, A. M., Ng, C. K., Noordin, N. K., Sali, A., & Yaacob, M. H. (2014). Review of energy conservation using duty cycling schemes for IEEE 802.15. 4 wireless sensor network (WSN). Wireless Personal Communications,77(1), 589–604.CrossRef
22.
Zurück zum Zitat Çetin, B. K., Prasad, N. R., & Prasad, R. (2013). Maximum lifetime routing problem in duty-cycling sensor networks. Wireless Personal Communications,72(1), 101–119.CrossRef Çetin, B. K., Prasad, N. R., & Prasad, R. (2013). Maximum lifetime routing problem in duty-cycling sensor networks. Wireless Personal Communications,72(1), 101–119.CrossRef
23.
Zurück zum Zitat Kang, B., Nguyen, P. K., Zalyubovskiy, V., & Choo, H. (2017). A distributed delay-efficient data aggregation scheduling for duty-cycled WSNs. IEEE Sensors Journal,17(11), 3422–3437.CrossRef Kang, B., Nguyen, P. K., Zalyubovskiy, V., & Choo, H. (2017). A distributed delay-efficient data aggregation scheduling for duty-cycled WSNs. IEEE Sensors Journal,17(11), 3422–3437.CrossRef
24.
Zurück zum Zitat Chen, Q., Gao, H., Cai, Z., Cheng, L., & Li, J. (2018). Distributed low-latency data aggregation for duty-cycle wireless sensor networks. IEEE/ACM Transactions on Networking,26(5), 2347–2360.CrossRef Chen, Q., Gao, H., Cai, Z., Cheng, L., & Li, J. (2018). Distributed low-latency data aggregation for duty-cycle wireless sensor networks. IEEE/ACM Transactions on Networking,26(5), 2347–2360.CrossRef
25.
Zurück zum Zitat Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (pp. 10-pp). IEEE. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (pp. 10-pp). IEEE.
26.
Zurück zum Zitat Kong, H. Y. (2010). Energy efficient cooperative LEACH protocol for wireless sensor networks. Journal of communication network,12(4), 358–365.CrossRef Kong, H. Y. (2010). Energy efficient cooperative LEACH protocol for wireless sensor networks. Journal of communication network,12(4), 358–365.CrossRef
27.
Zurück zum Zitat Cui, S., Goldsmith A. J., & Bahai, A. (2003). Modulation optimization under energy constraints. At proceedings of ICC’03, Alaska, USA. Cui, S., Goldsmith A. J., & Bahai, A. (2003). Modulation optimization under energy constraints. At proceedings of ICC’03, Alaska, USA.
28.
Zurück zum Zitat Garfinkel, R. S., & Nemhauser, G. L. (1972). Integer programming. New York: Wiley.MATH Garfinkel, R. S., & Nemhauser, G. L. (1972). Integer programming. New York: Wiley.MATH
30.
Zurück zum Zitat Pattem, S., Krishnamachari, B., Govindan, R. (2004). The impact of spatial correlation on routing with compression in wireless sensor networks. In Proceedings of 3rd international symposium on information processing and sensor networks (pp. 28–35). Pattem, S., Krishnamachari, B., Govindan, R. (2004). The impact of spatial correlation on routing with compression in wireless sensor networks. In Proceedings of 3rd international symposium on information processing and sensor networks (pp. 28–35).
Metadaten
Titel
Lifetime Enhancement of a WSN Through Duty Cycle in an Aggregation Based Cooperative MIMO Framework
verfasst von
Sarah Asheer
Sanjeet Kumar
Publikationsdatum
23.01.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07127-2

Weitere Artikel der Ausgabe 3/2020

Wireless Personal Communications 3/2020 Zur Ausgabe

Neuer Inhalt