Skip to main content

2019 | OriginalPaper | Buchkapitel

Lignocellulosic Energy Grasses for Combustion, Production, and Provision

verfasst von : Yasir Iqbal, Iris Lewandowski

Erschienen in: Energy from Organic Materials (Biomass)

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

C3 Grasses
Grasses possessing the C3 photosynthetic mechanism, so called because the first product of carbon fixation contains three carbon atoms.
C4 Grasses
Grasses possessing the C4 photosynthetic mechanism, so called because the first product of carbon fixation contains four carbon atoms.
Cellulose
Component of plant cell walls made up of chains of D-glucose (C6 sugar) molecules linked via hydrogen bridges consisting of 42% carbon (C), 6% hydrogen (H), and 52% oxygen (O).
Energy crops
Crops grown for the purpose of producing biomass for energetic use.
Energy grasses
Perennial grasses with high biomass potential which can preferentially be harvested once a year at low moisture content.
Hemicellulose
A heteropolysaccharide that contains various different sugar monomers such as glucose, xylose, mannose, galactose, rhamnose, and arabinose. Hemicellulose contains mostly D-pentose or so-called C5 sugars and is found in plant cell walls.
Lignin
Complex three-dimensional biopolymers built from phenylpropane derivatives consisting of 64% carbon, 6% hydrogen, and 6% oxygen.
Rhizomes
Underground shoot systems in perennial grasses serving as overwintering organs and for storage of nutrients.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat van der Weijde R (2016) Targets and tools for optimizing lignocellulosic biomass quality of miscanthus. Wageningen University, Wageningen van der Weijde R (2016) Targets and tools for optimizing lignocellulosic biomass quality of miscanthus. Wageningen University, Wageningen
2.
Zurück zum Zitat Lewandowski I, Scurlock JM, Lindvall E et al (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25(4):335–361CrossRef Lewandowski I, Scurlock JM, Lindvall E et al (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25(4):335–361CrossRef
3.
Zurück zum Zitat Don A, Osborne B, Hastings A et al (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4(4):372–391CrossRef Don A, Osborne B, Hastings A et al (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4(4):372–391CrossRef
4.
Zurück zum Zitat Elbersen B, Staritsky I, Hengeveld G et al (2012) Atlas of EU biomass potentials: spatially detailed and quantified overview of EU biomass potential taking into account the main criteria determining biomass availability from different sources Elbersen B, Staritsky I, Hengeveld G et al (2012) Atlas of EU biomass potentials: spatially detailed and quantified overview of EU biomass potential taking into account the main criteria determining biomass availability from different sources
5.
Zurück zum Zitat Lee Y (1964) Taxanomic studies on the genus Miscanthus (3). Relationships among the section, subsection and species1. J Jap Bot 39:196–204 Lee Y (1964) Taxanomic studies on the genus Miscanthus (3). Relationships among the section, subsection and species1. J Jap Bot 39:196–204
6.
Zurück zum Zitat Clayton WD, Renvoize SA (1986) Genera graminum. Grasses of the world, vol 13. H.M.S.O, London Clayton WD, Renvoize SA (1986) Genera graminum. Grasses of the world, vol 13. H.M.S.O, London
7.
Zurück zum Zitat Deuter M (2000) Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe. EMI Project, Final rep:28–52 Deuter M (2000) Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe. EMI Project, Final rep:28–52
8.
Zurück zum Zitat Hodkinson TR, Chase MW, Lledó DM et al (2002) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115(5):381–392CrossRef Hodkinson TR, Chase MW, Lledó DM et al (2002) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115(5):381–392CrossRef
9.
Zurück zum Zitat Casler MD, Stendal CA, Kapich L et al (2007) Genetic diversity, plant adaptation regions, and gene pools for switchgrass. Crop Sci 47(6):2261–2273CrossRef Casler MD, Stendal CA, Kapich L et al (2007) Genetic diversity, plant adaptation regions, and gene pools for switchgrass. Crop Sci 47(6):2261–2273CrossRef
10.
Zurück zum Zitat Hultquist SJ, Vogel K, Lee D et al (1996) Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. Crop Sci 36(4):1049–1052CrossRef Hultquist SJ, Vogel K, Lee D et al (1996) Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. Crop Sci 36(4):1049–1052CrossRef
11.
Zurück zum Zitat Sanderson M, Reed R, McLaughlin S et al (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56(1):83–93CrossRef Sanderson M, Reed R, McLaughlin S et al (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56(1):83–93CrossRef
12.
Zurück zum Zitat Casler M, Vogel K, Taliaferro C et al (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44(1):293–303CrossRef Casler M, Vogel K, Taliaferro C et al (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44(1):293–303CrossRef
13.
Zurück zum Zitat Burton GW (1942) A cytological study of some species in the tribe Paniceae. Am J Bot 29:355–360CrossRef Burton GW (1942) A cytological study of some species in the tribe Paniceae. Am J Bot 29:355–360CrossRef
14.
Zurück zum Zitat Andersson B, Lindvall E (1999) Canarygrass breeding in Sweden. Alternative crops for sustainable agriculture. In: COST 814. p 53–57 Andersson B, Lindvall E (1999) Canarygrass breeding in Sweden. Alternative crops for sustainable agriculture. In: COST 814. p 53–57
15.
Zurück zum Zitat Sahramaa M (2004) Evaluating germplasm of reed canary grass, Phalaris arundinacea L. University of Helsinki, Helsinki Sahramaa M (2004) Evaluating germplasm of reed canary grass, Phalaris arundinacea L. University of Helsinki, Helsinki
16.
Zurück zum Zitat Clifton-Brown J, Lewandowski I (2000) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148(2):287–294CrossRef Clifton-Brown J, Lewandowski I (2000) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148(2):287–294CrossRef
17.
Zurück zum Zitat Alexopoulou E, Sharma N, Papatheohari Y et al (2008) Biomass yields for upland and lowland switchgrass varieties grown in the Mediterranean region. Biomass Bioenergy 32(10):926–933CrossRef Alexopoulou E, Sharma N, Papatheohari Y et al (2008) Biomass yields for upland and lowland switchgrass varieties grown in the Mediterranean region. Biomass Bioenergy 32(10):926–933CrossRef
18.
Zurück zum Zitat Wolf DD, Fiske DA (2009) Planting and managing switchgrass for forage, wildlife, and conservation. Virginia Polytechnic Institute and State University, Blacksburg, pp 418–013 Wolf DD, Fiske DA (2009) Planting and managing switchgrass for forage, wildlife, and conservation. Virginia Polytechnic Institute and State University, Blacksburg, pp 418–013
19.
Zurück zum Zitat Wrobel C, Coulman B, Smith D (2009) The potential use of reed canarygrass (Phalaris arundinacea L.) as a biofuel crop. Acta Agric Scand Sect B–Soil Plant Sci 59(1):1–18 Wrobel C, Coulman B, Smith D (2009) The potential use of reed canarygrass (Phalaris arundinacea L.) as a biofuel crop. Acta Agric Scand Sect B–Soil Plant Sci 59(1):1–18
20.
Zurück zum Zitat Casler MD (2010) Genetics, breeding, and ecology of reed canarygrass. Int J Plant Bree 4(1):30–36CrossRef Casler MD (2010) Genetics, breeding, and ecology of reed canarygrass. Int J Plant Bree 4(1):30–36CrossRef
21.
Zurück zum Zitat Van der Weijde T, Alvim Kamei CL, Torres AF et al (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107 Van der Weijde T, Alvim Kamei CL, Torres AF et al (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107
22.
Zurück zum Zitat Cosentino SL, Patanè C, Sanzone E et al (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. In a Mediterranean environment. Ind Crop Prod 25(1):75–88CrossRef Cosentino SL, Patanè C, Sanzone E et al (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. In a Mediterranean environment. Ind Crop Prod 25(1):75–88CrossRef
23.
Zurück zum Zitat Beale CV, Morison JI, Long SP (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric For Meteorol 96(1):103–115CrossRef Beale CV, Morison JI, Long SP (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric For Meteorol 96(1):103–115CrossRef
24.
Zurück zum Zitat Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150(4):2104–2115CrossRef Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150(4):2104–2115CrossRef
25.
Zurück zum Zitat Dohleman F, Heaton E, Leakey A et al (2009) Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant Cell Environ 32(11):1525–1537CrossRef Dohleman F, Heaton E, Leakey A et al (2009) Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant Cell Environ 32(11):1525–1537CrossRef
26.
Zurück zum Zitat Clifton-Brown J, Neilson B, Lewandowski I et al (2000) The modelled productivity of Miscanthus× giganteus (GREEF et DEU) in Ireland. Ind Crop Prod 12(2):97–109CrossRef Clifton-Brown J, Neilson B, Lewandowski I et al (2000) The modelled productivity of Miscanthus× giganteus (GREEF et DEU) in Ireland. Ind Crop Prod 12(2):97–109CrossRef
27.
Zurück zum Zitat Hastings A, Clifton-Brown J, Wattenbach M et al (2009) The development of MISCANFOR, a new Miscanthus crop growth model: towards more robust yield predictions under different climatic and soil conditions. GCB Bioenergy 1(2):154–170CrossRef Hastings A, Clifton-Brown J, Wattenbach M et al (2009) The development of MISCANFOR, a new Miscanthus crop growth model: towards more robust yield predictions under different climatic and soil conditions. GCB Bioenergy 1(2):154–170CrossRef
28.
Zurück zum Zitat Wullschleger S, Sanderson M, McLaughlin S et al (1996) Photosynthetic rates and ploidy levels among populations of switchgrass. Crop Sci 36(2):306–312CrossRef Wullschleger S, Sanderson M, McLaughlin S et al (1996) Photosynthetic rates and ploidy levels among populations of switchgrass. Crop Sci 36(2):306–312CrossRef
29.
Zurück zum Zitat Kiniry JR, Anderson L, Johnson M et al (2013) Perennial biomass grasses and the mason–dixon line: comparative productivity across latitudes in the southern great plains. BioEnerg Res 6(1):276–291CrossRef Kiniry JR, Anderson L, Johnson M et al (2013) Perennial biomass grasses and the mason–dixon line: comparative productivity across latitudes in the southern great plains. BioEnerg Res 6(1):276–291CrossRef
30.
Zurück zum Zitat Squire GR (1990) The physiology of tropical crop production. CAB International, Wallingford Squire GR (1990) The physiology of tropical crop production. CAB International, Wallingford
31.
Zurück zum Zitat Mueller L, Behrendt A, Schalitz G et al (2005) Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate. Agric Water Manag 75(2):117–136CrossRef Mueller L, Behrendt A, Schalitz G et al (2005) Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate. Agric Water Manag 75(2):117–136CrossRef
32.
Zurück zum Zitat Lewandowski I, Clifton-Brown J, Trindade LM et al (2016) Progress on optimizing Miscanthus biomass production for the European bioeconomy: results of the EU FP7 project OPTIMISC. Front Plant Sci 7:1620CrossRef Lewandowski I, Clifton-Brown J, Trindade LM et al (2016) Progress on optimizing Miscanthus biomass production for the European bioeconomy: results of the EU FP7 project OPTIMISC. Front Plant Sci 7:1620CrossRef
33.
Zurück zum Zitat Chen C, van der Schoot H, Dehghan S et al (2017) Genetic diversity of salt tolerance in Miscanthus. Front Plant Sci 8:187 Chen C, van der Schoot H, Dehghan S et al (2017) Genetic diversity of salt tolerance in Miscanthus. Front Plant Sci 8:187
34.
Zurück zum Zitat Barney JN, Mann JJ, Kyser GB et al (2009) Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci 177(6):724–732CrossRef Barney JN, Mann JJ, Kyser GB et al (2009) Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci 177(6):724–732CrossRef
35.
Zurück zum Zitat Kim S, Rayburn AL, Voigt T et al (2012) Salinity effects on germination and plant growth of prairie cordgrass and switchgrass. Bioenergy Res 5(1):225–235CrossRef Kim S, Rayburn AL, Voigt T et al (2012) Salinity effects on germination and plant growth of prairie cordgrass and switchgrass. Bioenergy Res 5(1):225–235CrossRef
36.
Zurück zum Zitat Entry JA, Watrud LS, Reeves M (1999) Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi1. Environ Pollut 104(3):449–457CrossRef Entry JA, Watrud LS, Reeves M (1999) Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi1. Environ Pollut 104(3):449–457CrossRef
37.
Zurück zum Zitat Kercher SM, Zedler JB (2004) Flood tolerance in wetland angiosperms: a comparison of invasive and noninvasive species. Aquat Bot 80(2):89–102CrossRef Kercher SM, Zedler JB (2004) Flood tolerance in wetland angiosperms: a comparison of invasive and noninvasive species. Aquat Bot 80(2):89–102CrossRef
38.
Zurück zum Zitat Dzantor EK, Chekol T, Vough L (2000) Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. JEnviron Sci Health Part A 35(9):1645–1661CrossRef Dzantor EK, Chekol T, Vough L (2000) Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. JEnviron Sci Health Part A 35(9):1645–1661CrossRef
39.
Zurück zum Zitat Himken M, Lammel J, Neukirchen D et al (1997) Cultivation of Miscanthus under west European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189(1):117–126CrossRef Himken M, Lammel J, Neukirchen D et al (1997) Cultivation of Miscanthus under west European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189(1):117–126CrossRef
40.
Zurück zum Zitat Iqbal Y, Gauder M, Claupein W et al (2015) Yield and quality development comparison between Miscanthus and switchgrass over a period of 10 years. Energy 89:268–276CrossRef Iqbal Y, Gauder M, Claupein W et al (2015) Yield and quality development comparison between Miscanthus and switchgrass over a period of 10 years. Energy 89:268–276CrossRef
41.
Zurück zum Zitat Wright LL (1994) Production technology status of woody and herbaceous crops. Biomass Bioenergy 6(3):191–209CrossRef Wright LL (1994) Production technology status of woody and herbaceous crops. Biomass Bioenergy 6(3):191–209CrossRef
42.
Zurück zum Zitat McLaughlin S, Bouton J, Bransby D et al (1999) Developing switchgrass as a bioenergy crop. Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 282–289 McLaughlin S, Bouton J, Bransby D et al (1999) Developing switchgrass as a bioenergy crop. Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 282–289
43.
Zurück zum Zitat Iqbal Y, Lewandowski I (2014) Inter-annual variation in biomass combustion quality traits over five years in fifteen Miscanthus genotypes in south Germany. Fuel Process Technol 121(0):47–55CrossRef Iqbal Y, Lewandowski I (2014) Inter-annual variation in biomass combustion quality traits over five years in fifteen Miscanthus genotypes in south Germany. Fuel Process Technol 121(0):47–55CrossRef
44.
Zurück zum Zitat Xiong S, Zhang Q, Zhang D et al (2008) Influence of harvest time on fuel characteristics of five potential energy crops in northern China. Bioresour Technol 99(3):479–485CrossRef Xiong S, Zhang Q, Zhang D et al (2008) Influence of harvest time on fuel characteristics of five potential energy crops in northern China. Bioresour Technol 99(3):479–485CrossRef
45.
Zurück zum Zitat Adler PR, Sanderson MA, Boateng AA et al (2006) Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron J 98(6):1518–1525CrossRef Adler PR, Sanderson MA, Boateng AA et al (2006) Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron J 98(6):1518–1525CrossRef
46.
Zurück zum Zitat Christian DG, Yates NE, Riche AB (2006) The effect of harvest date on the yield and mineral content of Phalaris arundinacea L.(reed canary grass) genotypes screened for their potential as energy crops in southern England. J Sci Food Agric 86(8):1181–1188CrossRef Christian DG, Yates NE, Riche AB (2006) The effect of harvest date on the yield and mineral content of Phalaris arundinacea L.(reed canary grass) genotypes screened for their potential as energy crops in southern England. J Sci Food Agric 86(8):1181–1188CrossRef
47.
Zurück zum Zitat Rinehart L (2006) Switchgrass as a bioenergy crop. National Center for Appropriate Technology, Butte Rinehart L (2006) Switchgrass as a bioenergy crop. National Center for Appropriate Technology, Butte
48.
Zurück zum Zitat Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14(9):2000–2014CrossRef Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14(9):2000–2014CrossRef
49.
Zurück zum Zitat Iqbal Y, Lewandowski I (2016) Biomass composition and ash melting behaviour of selected Miscanthus genotypes in southern Germany. Fuel 180:606–612CrossRef Iqbal Y, Lewandowski I (2016) Biomass composition and ash melting behaviour of selected Miscanthus genotypes in southern Germany. Fuel 180:606–612CrossRef
50.
Zurück zum Zitat Burvall J (1997) Influence of harvest time and soil type on fuel quality in reed canary grass (Phalaris arundinacea L.) Biomass Bioenergy 12(3):149–154CrossRef Burvall J (1997) Influence of harvest time and soil type on fuel quality in reed canary grass (Phalaris arundinacea L.) Biomass Bioenergy 12(3):149–154CrossRef
51.
Zurück zum Zitat Kaack K, Schwarz K, Brander PE (2003) Variation in morphology, anatomy and chemistry of stems of Miscanthus genotypes differing in mechanical properties. Ind Crop Prod 17(2):131–142CrossRef Kaack K, Schwarz K, Brander PE (2003) Variation in morphology, anatomy and chemistry of stems of Miscanthus genotypes differing in mechanical properties. Ind Crop Prod 17(2):131–142CrossRef
52.
Zurück zum Zitat McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46CrossRef McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46CrossRef
53.
Zurück zum Zitat Monti A, Di Virgilio N, Venturi G (2008) Mineral composition and ash content of six major energy crops. Biomass Bioenergy 32(3):216–223CrossRef Monti A, Di Virgilio N, Venturi G (2008) Mineral composition and ash content of six major energy crops. Biomass Bioenergy 32(3):216–223CrossRef
54.
Zurück zum Zitat Ogden C, Ileleji K, Johnson K et al (2010) In-field direct combustion fuel property changes of switchgrass harvested from summer to fall. Fuel Process Technol 91(3):266–271CrossRef Ogden C, Ileleji K, Johnson K et al (2010) In-field direct combustion fuel property changes of switchgrass harvested from summer to fall. Fuel Process Technol 91(3):266–271CrossRef
Metadaten
Titel
Lignocellulosic Energy Grasses for Combustion, Production, and Provision
verfasst von
Yasir Iqbal
Iris Lewandowski
Copyright-Jahr
2019
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-7813-7_319