Skip to main content

2016 | OriginalPaper | Buchkapitel

Ionic Liquids for the Production of Man-Made Cellulosic Fibers: Opportunities and Challenges

verfasst von : Michael Hummel, Anne Michud, Marjaana Tanttu, Shirin Asaadi, Yibo Ma, Lauri K. J. Hauru, Arno Parviainen, Alistair W. T. King, Ilkka Kilpeläinen, Herbert Sixta

Erschienen in: Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The constant worldwide increase in consumption of goods will also affect the textile market. The demand for cellulosic textile fibers is predicted to increase at such a rate that by 2030 there will be a considerable shortage, estimated at ~15 million tons annually. Currently, man-made cellulosic fibers are produced commercially via the viscose and Lyocell™ processes. Ionic liquids (ILs) have been proposed as alternative solvents to circumvent certain problems associated with these existing processes. We first provide a comprehensive review of the progress in fiber spinning based on ILs over the last decade. A summary of the reports on the preparation of pure cellulosic and composite fibers is complemented by an overview of the rheological characteristics and thermal degradation of cellulose–IL solutions. In the second part, we present a non-imidazolium-based ionic liquid, 1,5-diazabicyclo[4.3.0]non-5-enium acetate, as an excellent solvent for cellulose fiber spinning. The use of moderate process temperatures in this process avoids the otherwise extensive cellulose degradation. The structural and morphological properties of the spun fibers are described, as determined by WAXS, birefringence, and SEM measurements. Mechanical properties are also reported. Further, the suitability of the spun fibers to produce yarns for various textile applications is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hämmerle FM (2011) The cellulose gap (the future of cellulose fibres). Lenzinger Ber 89:12–21 Hämmerle FM (2011) The cellulose gap (the future of cellulose fibres). Lenzinger Ber 89:12–21
2.
Zurück zum Zitat Eichinger D (2012) A vision of the world of cellulosic fibers in 2020. Lenzinger Ber 90:1–7 Eichinger D (2012) A vision of the world of cellulosic fibers in 2020. Lenzinger Ber 90:1–7
3.
Zurück zum Zitat Shen L, Patel MK (2010) Life cycle assessment of man-made cellulose fibres. Lenzinger Ber 88:1–59 Shen L, Patel MK (2010) Life cycle assessment of man-made cellulose fibres. Lenzinger Ber 88:1–59
5.
Zurück zum Zitat Bywater N (2011) The global viscose fibre industry in the 21st century – the first 10 years. Lenzinger Ber 89:22–29 Bywater N (2011) The global viscose fibre industry in the 21st century – the first 10 years. Lenzinger Ber 89:22–29
6.
Zurück zum Zitat Mikolajczyk W, Wawro D, Struszczyk H (1998) Cellulose carbamate spinning solutions prepared for the manufacture of fibers. Fibres Text East Eur 6:53–55 Mikolajczyk W, Wawro D, Struszczyk H (1998) Cellulose carbamate spinning solutions prepared for the manufacture of fibers. Fibres Text East Eur 6:53–55
8.
Zurück zum Zitat Weigel P, Fink H-P, Doss M (2005) Method for producing nonwovens from cellulose carbamate in a continuous procedure. Patent WO2005080660A1 Weigel P, Fink H-P, Doss M (2005) Method for producing nonwovens from cellulose carbamate in a continuous procedure. Patent WO2005080660A1
9.
Zurück zum Zitat Vehvilaeinen M, Kamppuri T, Rom M, Janicki J, Ciechanska D, Groenqvist S, Siika-Aho M, Elg Christoffersson K, Nousiainen P (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibres. Cellulose 15:671–680. doi:10.1007/s10570-008-9219-3 CrossRef Vehvilaeinen M, Kamppuri T, Rom M, Janicki J, Ciechanska D, Groenqvist S, Siika-Aho M, Elg Christoffersson K, Nousiainen P (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibres. Cellulose 15:671–680. doi:10.​1007/​s10570-008-9219-3 CrossRef
10.
Zurück zum Zitat Horvath AL (2006) Solubility of structurally complicated materials: I. Wood. J Phys Chem Ref Data 35(1):77–92CrossRef Horvath AL (2006) Solubility of structurally complicated materials: I. Wood. J Phys Chem Ref Data 35(1):77–92CrossRef
11.
Zurück zum Zitat Hansen CM, Björkman A (1998) The ultrastructure of wood from a solubility parameter point of view. Holzforschung 52(4):335–344CrossRef Hansen CM, Björkman A (1998) The ultrastructure of wood from a solubility parameter point of view. Holzforschung 52(4):335–344CrossRef
12.
Zurück zum Zitat Heinze T, Dicke R, Koschella A, Kull AH, Klohr E-A, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201(6):627–631CrossRef Heinze T, Dicke R, Koschella A, Kull AH, Klohr E-A, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201(6):627–631CrossRef
13.
Zurück zum Zitat Köhler S, Heinze T (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7(3):307–314CrossRef Köhler S, Heinze T (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7(3):307–314CrossRef
14.
16.
17.
18.
Zurück zum Zitat Bredereck K, Hermanutz F (2005) Man-made cellulosics. Rev Prog Color 35:59–75CrossRef Bredereck K, Hermanutz F (2005) Man-made cellulosics. Rev Prog Color 35:59–75CrossRef
19.
Zurück zum Zitat Liebert T (2010) Cellulose solvents – remarkable history, bright future. In: Liebert T, Heinze TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification. ACS Symposium Series, vol 1033. American Chemical Society, Washington DC, pp 3–54. doi:10.1021/bk-2010-1033.ch001 Liebert T (2010) Cellulose solvents – remarkable history, bright future. In: Liebert T, Heinze TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification. ACS Symposium Series, vol 1033. American Chemical Society, Washington DC, pp 3–54. doi:10.1021/bk-2010-1033.ch001
20.
Zurück zum Zitat Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524CrossRef Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524CrossRef
21.
Zurück zum Zitat BISFA (2009) Terminology of man-made fibres. BISFA, Brussels BISFA (2009) Terminology of man-made fibres. BISFA, Brussels
22.
Zurück zum Zitat Zikeli S, Ecker F, Schwenninger F, Jurkovic R, Ruef H (1995) Process and apparatus for producing cellulose fibers. Patent WO9501470A1 Zikeli S, Ecker F, Schwenninger F, Jurkovic R, Ruef H (1995) Process and apparatus for producing cellulose fibers. Patent WO9501470A1
23.
Zurück zum Zitat Wilhelm F, Eduard M, Hartmut R, Christoph S (1998) Method for producing cellulose fibres. Patent WO1998058103A1 Wilhelm F, Eduard M, Hartmut R, Christoph S (1998) Method for producing cellulose fibres. Patent WO1998058103A1
24.
Zurück zum Zitat Liu R, Shao H, Hu X (2001) The online measurement of lyocell fibers and investigation of elongational viscosity of cellulose N-methylmorpholine-N-oxide monohydrate solutions. Macromol Mater Eng 286:179–186. doi:10.1002/1439-2054(20010301) CrossRef Liu R, Shao H, Hu X (2001) The online measurement of lyocell fibers and investigation of elongational viscosity of cellulose N-methylmorpholine-N-oxide monohydrate solutions. Macromol Mater Eng 286:179–186. doi:10.​1002/​1439-2054(20010301) CrossRef
25.
Zurück zum Zitat Gindl W, Reifferscheid M, Adusumalli RB, Weber H, Roeder T, Sixta H, Schoeberl T (2008) Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer 49:792–799. doi:10.1016/j.polymer.2007.12.016 CrossRef Gindl W, Reifferscheid M, Adusumalli RB, Weber H, Roeder T, Sixta H, Schoeberl T (2008) Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer 49:792–799. doi:10.​1016/​j.​polymer.​2007.​12.​016 CrossRef
26.
Zurück zum Zitat Röder T, Moosbauer J, Kliba G, Schlader S, Zuckerstätter G, Sixta H (2009) Comparative characterisation of man-made regenerated cellulose fibres. Lenzinger Ber 87:98–105 Röder T, Moosbauer J, Kliba G, Schlader S, Zuckerstätter G, Sixta H (2009) Comparative characterisation of man-made regenerated cellulose fibres. Lenzinger Ber 87:98–105
27.
Zurück zum Zitat Buijtenhuijs FA, Abbas M, Witteveen AJ (1986) The degradation and stabilization of cellulose dissolved in N-methylmorpholine N-oxide (NMMO). Papier 40:615–619 Buijtenhuijs FA, Abbas M, Witteveen AJ (1986) The degradation and stabilization of cellulose dissolved in N-methylmorpholine N-oxide (NMMO). Papier 40:615–619
28.
Zurück zum Zitat Wendler F, Kosan B, Krieg M, Meister F (2009) Cellulosic shapes from ionic liquids modified by activated charcoals and nanosilver particles. Lenzinger Ber 87:106–116 Wendler F, Kosan B, Krieg M, Meister F (2009) Cellulosic shapes from ionic liquids modified by activated charcoals and nanosilver particles. Lenzinger Ber 87:106–116
29.
Zurück zum Zitat Kalt W, Maenner J, Firgo H (1995) Molding or spinning material containing cellulose and manufacture of molded or spun articles from. Patent WO9508010A1 Kalt W, Maenner J, Firgo H (1995) Molding or spinning material containing cellulose and manufacture of molded or spun articles from. Patent WO9508010A1
30.
Zurück zum Zitat Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26(9):1763–1837CrossRef Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26(9):1763–1837CrossRef
31.
Zurück zum Zitat Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imp Sci (St Petersburg) 8:405–422 Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imp Sci (St Petersburg) 8:405–422
33.
Zurück zum Zitat Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2083CrossRef Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2083CrossRef
34.
Zurück zum Zitat Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975CrossRef Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975CrossRef
35.
Zurück zum Zitat Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728CrossRef Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728CrossRef
37.
39.
Zurück zum Zitat Singh S, Simmons BA (2013) Ionic liquid pretreatment: mechanism, performance, and challenges. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Chichester, pp 223–238. doi:10.1002/9780470975831.ch11 Singh S, Simmons BA (2013) Ionic liquid pretreatment: mechanism, performance, and challenges. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Chichester, pp 223–238. doi:10.​1002/​9780470975831.​ch11
40.
Zurück zum Zitat Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194. doi:10.1021/bm801430x CrossRef Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194. doi:10.​1021/​bm801430x CrossRef
41.
42.
Zurück zum Zitat Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13(5):1688–1699. doi:10.1021/bm300407q CrossRef Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13(5):1688–1699. doi:10.​1021/​bm300407q CrossRef
43.
Zurück zum Zitat Sammons RJ, Collier JR, Rials TG, Petrovan S (2008) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. I. shear rheology. J Appl Polym Sci 110:1175–1181. doi:10.1002/app.28733 CrossRef Sammons RJ, Collier JR, Rials TG, Petrovan S (2008) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. I. shear rheology. J Appl Polym Sci 110:1175–1181. doi:10.​1002/​app.​28733 CrossRef
44.
Zurück zum Zitat Collier JR, Watson JL, Collier BJ, Petrovan S (2009) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. II. Solution character and preparation. J Appl Polym Sci 111:1019–1027. doi:10.1002/app.28995 Collier JR, Watson JL, Collier BJ, Petrovan S (2009) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. II. Solution character and preparation. J Appl Polym Sci 111:1019–1027. doi:10.​1002/​app.​28995
46.
Zurück zum Zitat Lu F, Cheng B, Song J, Liang Y (2012) Rheological characterization of concentrated cellulose solutions in 1-allyl-3-methylimidazolium chloride. J Appl Polym Sci 124(4):3419–3425. doi:10.1002/app.35363 CrossRef Lu F, Cheng B, Song J, Liang Y (2012) Rheological characterization of concentrated cellulose solutions in 1-allyl-3-methylimidazolium chloride. J Appl Polym Sci 124(4):3419–3425. doi:10.​1002/​app.​35363 CrossRef
47.
Zurück zum Zitat Chen X, Zhang Y, Wang H, Wang S-W, Liang S, Colby RH (2011) Solution rheology of cellulose in 1-butyl-3-methyl imidazolium chloride. J Rheol 55(3):485–494. doi:10.1122/1.3553032 CrossRef Chen X, Zhang Y, Wang H, Wang S-W, Liang S, Colby RH (2011) Solution rheology of cellulose in 1-butyl-3-methyl imidazolium chloride. J Rheol 55(3):485–494. doi:10.​1122/​1.​3553032 CrossRef
48.
Zurück zum Zitat Schausberger A, Moslinger R (1999) Rheology of cellulose solutions. A tool for the characterization of cellulose. Papier 53:715–721 Schausberger A, Moslinger R (1999) Rheology of cellulose solutions. A tool for the characterization of cellulose. Papier 53:715–721
49.
Zurück zum Zitat Sammons RJ, Collier JR, Rials TG, Petrovan S (2008) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. III. Elongational rheology. J Appl Polym Sci 110:3203–3208. doi:10.1002/app.28928 CrossRef Sammons RJ, Collier JR, Rials TG, Petrovan S (2008) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. III. Elongational rheology. J Appl Polym Sci 110:3203–3208. doi:10.​1002/​app.​28928 CrossRef
51.
Zurück zum Zitat Stelter M, Brenn G, Yarin AL, Singh RP, Durst F (2002) Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer. J Rheol 46:507–527. doi:10.1122/1.1445185 CrossRef Stelter M, Brenn G, Yarin AL, Singh RP, Durst F (2002) Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer. J Rheol 46:507–527. doi:10.​1122/​1.​1445185 CrossRef
52.
Zurück zum Zitat Ma B, Qin A, Li X, He C (2013) Preparation of cellulose hollow fiber membrane from bamboo pulp/1-butyl-3-methylimidazolium chloride/dimethylsulfoxide system. Ind Eng Chem Res 52:9417–9421. doi:10.1021/ie401097d CrossRef Ma B, Qin A, Li X, He C (2013) Preparation of cellulose hollow fiber membrane from bamboo pulp/1-butyl-3-methylimidazolium chloride/dimethylsulfoxide system. Ind Eng Chem Res 52:9417–9421. doi:10.​1021/​ie401097d CrossRef
53.
Zurück zum Zitat Hummel M, Michud A, Sixta H (2012) Structure formation of cellulosic material upon regeneration from ionic liquid solutions. In: Abstracts 243rd National Meeting American Chemical Society, I&EC Division, San Diego. ACS, Washington DC, pp IEC-17 Hummel M, Michud A, Sixta H (2012) Structure formation of cellulosic material upon regeneration from ionic liquid solutions. In: Abstracts 243rd National Meeting American Chemical Society, I&EC Division, San Diego. ACS, Washington DC, pp IEC-17
55.
Zurück zum Zitat Boerstoel H (1998) Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns. Dissertation, Universit of Groningen Boerstoel H (1998) Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns. Dissertation, Universit of Groningen
57.
Zurück zum Zitat Onofrei MD, Dobos AM, Stoica I, Olaru N, Olaru L, Ioan S (2014) Lyotropic liquid crystal phases in cellulose acetate phthalate/hydroxypropyl cellulose blends. J Polym Environ 22(1):99–111. doi:10.1007/s10924-013-0618-7 CrossRef Onofrei MD, Dobos AM, Stoica I, Olaru N, Olaru L, Ioan S (2014) Lyotropic liquid crystal phases in cellulose acetate phthalate/hydroxypropyl cellulose blends. J Polym Environ 22(1):99–111. doi:10.​1007/​s10924-013-0618-7 CrossRef
59.
Zurück zum Zitat Northolt MG, Boerstoel H, Maatman H, Huisman R, Veurink J, Elzerman H (2001) The structure and properties of cellulose fibres spun from an anisotropic phosphoric acid solution. Polymer 42(19):8249–8264. doi:10.1016/S0032-3861(01)00211-7 CrossRef Northolt MG, Boerstoel H, Maatman H, Huisman R, Veurink J, Elzerman H (2001) The structure and properties of cellulose fibres spun from an anisotropic phosphoric acid solution. Polymer 42(19):8249–8264. doi:10.​1016/​S0032-3861(01)00211-7 CrossRef
61.
Zurück zum Zitat Song H, Zhang J, Niu Y, Wang Z (2010) Phase transition and rheological behaviors of concentrated cellulose/ionic liquid solutions. J Phys Chem B 114(18):6006–6013. doi:10.1021/jp1013863 CrossRef Song H, Zhang J, Niu Y, Wang Z (2010) Phase transition and rheological behaviors of concentrated cellulose/ionic liquid solutions. J Phys Chem B 114(18):6006–6013. doi:10.​1021/​jp1013863 CrossRef
62.
Zurück zum Zitat Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel–sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12(4):1087–1096. doi:10.1021/bm101426p CrossRef Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel–sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12(4):1087–1096. doi:10.​1021/​bm101426p CrossRef
64.
Zurück zum Zitat Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol 31(8):683–697. doi:10.1122/1.549955 CrossRef Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol 31(8):683–697. doi:10.​1122/​1.​549955 CrossRef
65.
Zurück zum Zitat Swatloski RP, Rogers RD, Holbrey JD (2003) Dissolution and processing of cellulose using ionic liquids, cellulose solution, and regenerating cellulose. Patent WO2003029329A2 Swatloski RP, Rogers RD, Holbrey JD (2003) Dissolution and processing of cellulose using ionic liquids, cellulose solution, and regenerating cellulose. Patent WO2003029329A2
66.
Zurück zum Zitat Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Roeder H, Roeder T, Sixta H (2005) Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzinger Ber 84:71–85 Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Roeder H, Roeder T, Sixta H (2005) Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzinger Ber 84:71–85
67.
Zurück zum Zitat Bentivoglio G, Roeder T, Fasching M, Buchberger M, Schottenberger H, Sixta H (2006) Cellulose processing with chloride-based ionic liquids. Lenzinger Ber 86:154–161 Bentivoglio G, Roeder T, Fasching M, Buchberger M, Schottenberger H, Sixta H (2006) Cellulose processing with chloride-based ionic liquids. Lenzinger Ber 86:154–161
68.
Zurück zum Zitat Vagt U (2010) Cellulose dissolution and processing with ionic liquids. Wiley-VCH, Weinheim, pp 123–136 Vagt U (2010) Cellulose dissolution and processing with ionic liquids. Wiley-VCH, Weinheim, pp 123–136
69.
Zurück zum Zitat Michels C, Kosan B (2006) Structure of lyocell fibers, spun from aqueous amino oxides and/or ionic liquids. Lenzinger Ber 86:144–153 Michels C, Kosan B (2006) Structure of lyocell fibers, spun from aqueous amino oxides and/or ionic liquids. Lenzinger Ber 86:144–153
72.
73.
75.
Zurück zum Zitat Ingildeev D, Effenberger F, Bredereck K, Hermanutz F (2013) Comparison of direct solvents for regenerated cellulosic fibers via the lyocell process and by means of ionic liquids. J Appl Polym Sci 128:4141–4150. doi:10.1002/app.38470 CrossRef Ingildeev D, Effenberger F, Bredereck K, Hermanutz F (2013) Comparison of direct solvents for regenerated cellulosic fibers via the lyocell process and by means of ionic liquids. J Appl Polym Sci 128:4141–4150. doi:10.​1002/​app.​38470 CrossRef
76.
Zurück zum Zitat Jiang G, Yuan Y, Wang B, Yin X, Mukuze KS, Huang W, Zhang Y, Wang H (2012) Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased. Cellulose 19:1075–1083. doi:10.1007/s10570-012-9716-2 CrossRef Jiang G, Yuan Y, Wang B, Yin X, Mukuze KS, Huang W, Zhang Y, Wang H (2012) Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased. Cellulose 19:1075–1083. doi:10.​1007/​s10570-012-9716-2 CrossRef
77.
Zurück zum Zitat Hermanutz F, Ingeldeev D, Effenberger F (2013) Environmentally friendly process for producing continuous micro- or supermicrofibers based on cellulose. Patent DE102012005489A1 Hermanutz F, Ingeldeev D, Effenberger F (2013) Environmentally friendly process for producing continuous micro- or supermicrofibers based on cellulose. Patent DE102012005489A1
78.
Zurück zum Zitat Kosan B, Schwikal K, Meister F (2012) Effects of pre-treatment and dissolution conditions for improved solution and processing properties of cellulose in ionic liquids. Lenzinger Ber 90:76–84 Kosan B, Schwikal K, Meister F (2012) Effects of pre-treatment and dissolution conditions for improved solution and processing properties of cellulose in ionic liquids. Lenzinger Ber 90:76–84
79.
Zurück zum Zitat Michels C, Kosan B (2001) The lyocell process – present output limit from the material and technological viewpoint. Lenzinger Ber 80:13–21 Michels C, Kosan B (2001) The lyocell process – present output limit from the material and technological viewpoint. Lenzinger Ber 80:13–21
80.
Zurück zum Zitat Michels C, Kosan B (2005) Contribution to the dissolution state of cellulose and cellulose derivatives. Lenzinger Ber 84:62–70 Michels C, Kosan B (2005) Contribution to the dissolution state of cellulose and cellulose derivatives. Lenzinger Ber 84:62–70
81.
Zurück zum Zitat Michels C, Kosan B (2000) Lyocell process - material and technological restrictions. Chem Fibers Int 50:556, 558–561 Michels C, Kosan B (2000) Lyocell process - material and technological restrictions. Chem Fibers Int 50:556, 558–561
83.
Zurück zum Zitat Sammons RJ, Collier JR, Rials TG, Spruiell JE, Petrovan S (2013) Orientation of carbon fiber precursors from 1-butyl-3-methylimidazolium chloride cellulose solutions. J Appl Polym Sci 128:951–957. doi:10.1002/app.37906 CrossRef Sammons RJ, Collier JR, Rials TG, Spruiell JE, Petrovan S (2013) Orientation of carbon fiber precursors from 1-butyl-3-methylimidazolium chloride cellulose solutions. J Appl Polym Sci 128:951–957. doi:10.​1002/​app.​37906 CrossRef
84.
Zurück zum Zitat Hermanutz F, Meister F, Uerdingen E (2006) New developments in the manufacture of cellulose fibers with ionic liquids. Chem Fibers Int 56:342, 344 Hermanutz F, Meister F, Uerdingen E (2006) New developments in the manufacture of cellulose fibers with ionic liquids. Chem Fibers Int 56:342, 344
85.
86.
Zurück zum Zitat Olsson C, Westman G (2013) Wet spinning of cellulose from ionic liquid solutions-viscometry and mechanical performance. J Appl Polym Sci 127:4542–4548. doi:10.1002/app.38064 CrossRef Olsson C, Westman G (2013) Wet spinning of cellulose from ionic liquid solutions-viscometry and mechanical performance. J Appl Polym Sci 127:4542–4548. doi:10.​1002/​app.​38064 CrossRef
87.
Zurück zum Zitat Li X, Li N, Xu J, Duan X, Sun Y, Zhao Q (2014) Cellulose fibers from cellulose/1-ethyl-3-methylimidazolium acetate solution by wet spinning with increasing spinning speeds. J Appl Polym Sci 131(9):40225. doi:10.1002/app.40225 Li X, Li N, Xu J, Duan X, Sun Y, Zhao Q (2014) Cellulose fibers from cellulose/1-ethyl-3-methylimidazolium acetate solution by wet spinning with increasing spinning speeds. J Appl Polym Sci 131(9):40225. doi:10.​1002/​app.​40225
88.
Zurück zum Zitat Sun N, Swatloski RP, Maxim ML, Rahman M, Harland AG, Haque A, Spear SK, Daly DT, Rogers RD (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem 18:283–290. doi:10.1039/b713194a CrossRef Sun N, Swatloski RP, Maxim ML, Rahman M, Harland AG, Haque A, Spear SK, Daly DT, Rogers RD (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem 18:283–290. doi:10.​1039/​b713194a CrossRef
89.
90.
Zurück zum Zitat Maxim ML, Sun N, Swatloski RP, Rahman M, Harland AG, Haque A, Spear SK, Daly DT, Rogers RD (2010) Properties of cellulose/TiO2 fibers processed from ionic liquids. ACS Symp Ser 1033:261–274. doi:10.1021/bk-2010-1033.ch014 CrossRef Maxim ML, Sun N, Swatloski RP, Rahman M, Harland AG, Haque A, Spear SK, Daly DT, Rogers RD (2010) Properties of cellulose/TiO2 fibers processed from ionic liquids. ACS Symp Ser 1033:261–274. doi:10.​1021/​bk-2010-1033.​ch014 CrossRef
92.
Zurück zum Zitat Zhang H, Wang Z, Zhang Z, Wu J, Zhang J, He J (2007) Regenerated cellulose/multiwalled carbon nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704. doi:10.1002/adma.200600442 CrossRef Zhang H, Wang Z, Zhang Z, Wu J, Zhang J, He J (2007) Regenerated cellulose/multiwalled carbon nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704. doi:10.​1002/​adma.​200600442 CrossRef
93.
94.
95.
Zurück zum Zitat Kosan B, Nechwatal A, Meister F (2008) Cellulose multi-component fibers from ionic liquids. Chem Fibers Int 58:234–236 Kosan B, Nechwatal A, Meister F (2008) Cellulose multi-component fibers from ionic liquids. Chem Fibers Int 58:234–236
96.
98.
Zurück zum Zitat Wendler F, Meister F, Wawro D, Wesolowska E, Ciechanska D, Saake B, Puls J, Le Moigne N, Navard P (2010) Polysaccharide blend fibres formed from NaOH, N-methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium acetate. Fibres Text East Eur 18:21–30 Wendler F, Meister F, Wawro D, Wesolowska E, Ciechanska D, Saake B, Puls J, Le Moigne N, Navard P (2010) Polysaccharide blend fibres formed from NaOH, N-methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium acetate. Fibres Text East Eur 18:21–30
99.
Zurück zum Zitat Wendler F, Persin Z, Stana-Kleinschek K, Reischl M, Ribitsch V, Bohn A, Fink H-P, Meister F (2011) Morphology of polysaccharide blend fibers shaped from NaOH, N-methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium acetate. Cellulose 18:1165–1178. doi:10.1007/s10570-011-9559-2 CrossRef Wendler F, Persin Z, Stana-Kleinschek K, Reischl M, Ribitsch V, Bohn A, Fink H-P, Meister F (2011) Morphology of polysaccharide blend fibers shaped from NaOH, N-methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium acetate. Cellulose 18:1165–1178. doi:10.​1007/​s10570-011-9559-2 CrossRef
100.
Zurück zum Zitat Lehmann A, Ebeling H, Fink H-P (2012) Method for economical production of lignin-containing precursor fibers for use in further production of carbon fibers. Patent WO2012156441A1 Lehmann A, Ebeling H, Fink H-P (2012) Method for economical production of lignin-containing precursor fibers for use in further production of carbon fibers. Patent WO2012156441A1
101.
Zurück zum Zitat Sun N, Li W, Stoner B, Jiang X, Lu X, Rogers RD (2011) Composite fibers spun directly from solutions of raw lignocellulosic biomass dissolved in ionic liquids. Green Chem 13:1158–1161. doi:10.1039/c1gc15033b CrossRef Sun N, Li W, Stoner B, Jiang X, Lu X, Rogers RD (2011) Composite fibers spun directly from solutions of raw lignocellulosic biomass dissolved in ionic liquids. Green Chem 13:1158–1161. doi:10.​1039/​c1gc15033b CrossRef
102.
Zurück zum Zitat Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655. doi:10.1039/b822702k CrossRef Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655. doi:10.​1039/​b822702k CrossRef
103.
Zurück zum Zitat Hauru LKJ, Ma Y, Hummel M, Alekhina M, King AWT, Kilpelaeinen I, Penttilae PA, Serimaa R, Sixta H (2013) Enhancement of ionic liquid-aided fractionation of birchwood. Part 1: autohydrolysis pretreatment. RSC Adv 3:16365–16373. doi:10.1039/c3ra41529e CrossRef Hauru LKJ, Ma Y, Hummel M, Alekhina M, King AWT, Kilpelaeinen I, Penttilae PA, Serimaa R, Sixta H (2013) Enhancement of ionic liquid-aided fractionation of birchwood. Part 1: autohydrolysis pretreatment. RSC Adv 3:16365–16373. doi:10.​1039/​c3ra41529e CrossRef
104.
Zurück zum Zitat Lehmann A, Bohrisch J, Protz R, Fink H-P (2013) Method for preparing lignocellulose spinning solution and spin regenerated fibers from it without any initial preatreatments. Patent WO2013144082A1 Lehmann A, Bohrisch J, Protz R, Fink H-P (2013) Method for preparing lignocellulose spinning solution and spin regenerated fibers from it without any initial preatreatments. Patent WO2013144082A1
105.
106.
Zurück zum Zitat Köhler S, Liebert T, Schöbitz M, Schaller J, Meister F, Günther W, Heinze T (2007) Interactions of ionic liquids with polysaccharides 1. Unexpected acetylation of cellulose with 1-ethyl-3-methylimidazolium acetate. Macromol Rapid Commun 28(24):2311–2317. doi:10.1002/marc.200700529 CrossRef Köhler S, Liebert T, Schöbitz M, Schaller J, Meister F, Günther W, Heinze T (2007) Interactions of ionic liquids with polysaccharides 1. Unexpected acetylation of cellulose with 1-ethyl-3-methylimidazolium acetate. Macromol Rapid Commun 28(24):2311–2317. doi:10.​1002/​marc.​200700529 CrossRef
107.
Zurück zum Zitat Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971. doi:10.1039/c003583a CrossRef Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971. doi:10.​1039/​c003583a CrossRef
110.
111.
Zurück zum Zitat Awad WH, Gilman JW, Nyden M, Harris RH Jr, Sutto TE, Callahan J, Trulove PC, DeLong HC, Fox DM (2004) Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta 409(1):3–11. doi:10.1016/s0040-6031(03)00334-4 CrossRef Awad WH, Gilman JW, Nyden M, Harris RH Jr, Sutto TE, Callahan J, Trulove PC, DeLong HC, Fox DM (2004) Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta 409(1):3–11. doi:10.​1016/​s0040-6031(03)00334-4 CrossRef
112.
Zurück zum Zitat Liebner F, Patel I, Ebner G, Becker E, Horix M, Potthast A, Rosenau T (2010) Thermal aging of 1-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose. Holzforschung 64:161–166. doi:10.1515/hf.2010.033 CrossRef Liebner F, Patel I, Ebner G, Becker E, Horix M, Potthast A, Rosenau T (2010) Thermal aging of 1-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose. Holzforschung 64:161–166. doi:10.​1515/​hf.​2010.​033 CrossRef
113.
Zurück zum Zitat Aggarwal VK, Emme I, Mereu A (2002) Unexpected side reactions of imidazolium-based ionic liquids in the base-catalysed Baylis-Hillman reaction. Chem Commun 2002(15):1612–1613CrossRef Aggarwal VK, Emme I, Mereu A (2002) Unexpected side reactions of imidazolium-based ionic liquids in the base-catalysed Baylis-Hillman reaction. Chem Commun 2002(15):1612–1613CrossRef
114.
Zurück zum Zitat King AWT, Parviainen A, Karhunen P, Matikainen J, Hauru LKJ, Sixta H, Kilpelaeinen I (2012) Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Adv 2:8020–8026. doi:10.1039/c2ra21287k CrossRef King AWT, Parviainen A, Karhunen P, Matikainen J, Hauru LKJ, Sixta H, Kilpelaeinen I (2012) Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Adv 2:8020–8026. doi:10.​1039/​c2ra21287k CrossRef
115.
Zurück zum Zitat Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49(51):7322–7324CrossRef Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49(51):7322–7324CrossRef
117.
Zurück zum Zitat Dorn S, Wendler F, Meister F, Heinze T (2008) Interactions of ionic liquids with polysaccharides – 7: thermal stability of cellulose in ionic liquids and N-methylmorpholine-N-oxide. Macromol Mater Eng 293:907–913. doi:10.1002/mame.200800153 CrossRef Dorn S, Wendler F, Meister F, Heinze T (2008) Interactions of ionic liquids with polysaccharides – 7: thermal stability of cellulose in ionic liquids and N-methylmorpholine-N-oxide. Macromol Mater Eng 293:907–913. doi:10.​1002/​mame.​200800153 CrossRef
119.
Zurück zum Zitat Parviainen A, King AWT, Mutikainen I, Hummel M, Selg C, Hauru LKJ, Sixta H, Kilpelaeinen I (2013) Predicting cellulose solvating capabilities of acid–base conjugate ionic liquids. ChemSusChem 6:2161–2169. doi:10.1002/cssc.201300143 CrossRef Parviainen A, King AWT, Mutikainen I, Hummel M, Selg C, Hauru LKJ, Sixta H, Kilpelaeinen I (2013) Predicting cellulose solvating capabilities of acid–base conjugate ionic liquids. ChemSusChem 6:2161–2169. doi:10.​1002/​cssc.​201300143 CrossRef
120.
Zurück zum Zitat Wahlstroem R, King A, Parviainen A, Kruus K, Suurnaekki A (2013) Cellulose hydrolysis with thermo- and alkali-tolerant cellulases in cellulose-dissolving superbase ionic liquids. RSC Adv 3:20001–20009. doi:10.1039/c3ra42987c CrossRef Wahlstroem R, King A, Parviainen A, Kruus K, Suurnaekki A (2013) Cellulose hydrolysis with thermo- and alkali-tolerant cellulases in cellulose-dissolving superbase ionic liquids. RSC Adv 3:20001–20009. doi:10.​1039/​c3ra42987c CrossRef
121.
Zurück zum Zitat Froschauer C, Hummel M, Iakovlev M, Roselli A, Schottenberger H, Sixta H (2013) Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules 14:1741–1750. doi:10.1021/bm400106h CrossRef Froschauer C, Hummel M, Iakovlev M, Roselli A, Schottenberger H, Sixta H (2013) Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules 14:1741–1750. doi:10.​1021/​bm400106h CrossRef
122.
Zurück zum Zitat Berggren R, Berthold F, Sjöholm E, Lindström M (2003) Improved methods for evaluating the molar mass distributions of cellulose in kraft pulp. J Appl Polym Sci 88(5):1170–1179. doi:10.1002/app.11767 CrossRef Berggren R, Berthold F, Sjöholm E, Lindström M (2003) Improved methods for evaluating the molar mass distributions of cellulose in kraft pulp. J Appl Polym Sci 88(5):1170–1179. doi:10.​1002/​app.​11767 CrossRef
123.
Zurück zum Zitat Hauru LKJ, Hummel M, King AWT, Kilpelainen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13:2896–2905. doi:10.1021/bm300912y CrossRef Hauru LKJ, Hummel M, King AWT, Kilpelainen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13:2896–2905. doi:10.​1021/​bm300912y CrossRef
124.
Zurück zum Zitat Röder T, Moosbauer J, Fasching M, Bohn A, Fink H-P, Baldinger T, Sixta H (2006) Crystallinity determination of native cellulose-comparison of analytical methods. Lenzinger Ber 86:85–89 Röder T, Moosbauer J, Fasching M, Bohn A, Fink H-P, Baldinger T, Sixta H (2006) Crystallinity determination of native cellulose-comparison of analytical methods. Lenzinger Ber 86:85–89
127.
Zurück zum Zitat Maenner J, Ivanoff D, Morley RJ, Jary S (2011) TENCEL - new cellulose fibers for carpets. Lenzinger Ber 89:60–71 Maenner J, Ivanoff D, Morley RJ, Jary S (2011) TENCEL - new cellulose fibers for carpets. Lenzinger Ber 89:60–71
128.
Zurück zum Zitat Adusumalli R-B, Keckes J, Martinschitz K, Boesecke P, Weber H, Roeder T, Sixta H, Gindl W (2009) Comparison of molecular orientation and mechanical properties of lyocell fibre tow and staple fibres. Cellulose 16(5):765–772. doi:10.1007/s10570-009-9292-2 CrossRef Adusumalli R-B, Keckes J, Martinschitz K, Boesecke P, Weber H, Roeder T, Sixta H, Gindl W (2009) Comparison of molecular orientation and mechanical properties of lyocell fibre tow and staple fibres. Cellulose 16(5):765–772. doi:10.​1007/​s10570-009-9292-2 CrossRef
130.
Zurück zum Zitat Fink HP, Walenta E (1994) X-ray diffraction investigations of cellulose supramolecular structure at processing. Papier 48(12):739–748 Fink HP, Walenta E (1994) X-ray diffraction investigations of cellulose supramolecular structure at processing. Papier 48(12):739–748
131.
Zurück zum Zitat Gindl W, Reifferscheid M, Martinschitz KJ, Boesecke P, Keckes J (2008) Reorientation of crystalline and noncrystalline regions in regenerated cellulose fibers and films tested in uniaxial tension. J Polym Sci B Polym Phys 46:297–304. doi:10.1002/polb.21367 CrossRef Gindl W, Reifferscheid M, Martinschitz KJ, Boesecke P, Keckes J (2008) Reorientation of crystalline and noncrystalline regions in regenerated cellulose fibers and films tested in uniaxial tension. J Polym Sci B Polym Phys 46:297–304. doi:10.​1002/​polb.​21367 CrossRef
Metadaten
Titel
Ionic Liquids for the Production of Man-Made Cellulosic Fibers: Opportunities and Challenges
verfasst von
Michael Hummel
Anne Michud
Marjaana Tanttu
Shirin Asaadi
Yibo Ma
Lauri K. J. Hauru
Arno Parviainen
Alistair W. T. King
Ilkka Kilpeläinen
Herbert Sixta
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/12_2015_307

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.