Skip to main content

2015 | OriginalPaper | Buchkapitel

5. Beyond rate-independence

verfasst von : Alexander Mielke, Tomàš Roubíček

Erschienen in: Rate-Independent Systems

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sometimes, dynamical systems host various processes, only some of which are rate-independent. These processes can be manifested depending on loading regimes, and only in some regimes (typically very slow) do the rate-independent processes dominate; cf. also Sect. 5.1.2.2 below. In other regimes, however, the modeling assumption about rate-independence is inapplicable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The equidistance of the partition is now advantageously used in (5.1.30).
 
2
Similar results for the special cases can be found in [407] (for \(\mathcal{V} = 0\)) and [497]. For the estimate (5.1.76) (5.1.77) , see also [532, Formula (11.16)].
 
3
In fact, \(\langle \frac{\mathrm{d}} {\mathrm{d}t}\partial \mathcal{R}(\dot{\boldsymbol{z}}_{\varepsilon }),\dot{\boldsymbol{z}}_{\varepsilon }\rangle \geq 0\), which allows us to ignore the \(\mathcal{R}\)-term for this estimate, is written very formally; a rigorous argument can be based on the cancellation of the \(\mathcal{R}\)-terms in (5.1.76).
 
4
For such nonlinear hyperbolic problems, see also [8, 407].
 
5
This is due to the maximum principle valid for the r-Laplacian in (5.2.14b).
 
6
Time ranges from minutes during fast rupturing and running earthquakes to thousands of years during healing phases in which the lithosphere can be considered, solid and even the small-strain concept is applicable, in contrast to hundreds of millions of years, a time scale over which the lithosphere is seen as rather fluid.
 
7
In fact, the ansatz \(\boldsymbol{u} =\zeta\), \(\boldsymbol{y} = u\), and \(\boldsymbol{z} =\pi\) would apply in (5.1.110) in this quasistatic case.
 
8
Indeed, \(\mathbb{H}\) is to be suitably qualified. For example, in addition to the invariance of \(\mathbb{C}\) where the orthogonal subspaces of deviatoric and spherical components (4.3.43) are now to be modified for \(\mathbb{C} = \mathbb{C}(\zeta )\), and we need to assume that \(\mathbb{H}\nabla e...\nabla e = \mathbb{H}_{\mbox{ D}}\nabla \mathrm{dev}\,e...\nabla \mathrm{dev}\,e + H_{\mbox{ S}}\nabla \mathrm{tr}\,e \cdot \nabla \mathrm{tr}\,e\) for some \(\mathbb{H}_{\mbox{ D}} > 0\) and \(H_{\mbox{ S}} > 0\).
 
9
For the analysis, we assume in particular that \(\epsilon \vert z\vert ^{2} \leq a(z) \leq (1+\vert z\vert ^{2})/\epsilon\) for some ε > 0 and \(\varSigma (\zeta ) = s_{_{\mathrm{Y}}}(\zeta )B_{1}\) with a yield stress \(s_{_{\mathrm{Y}}}: [0, 1] \rightarrow \mathbb{R}^{+}\) continuous and \(B_{1} \subset \mathbb{R}_{\mathrm{dev}}^{d\times d}\) convex, closed, \(0 \in \mbox{ int}\,B_{1}\). An important attribute of this model is that \(\mathbb{H}\) acts on the whole elastic strain and is not subject to damage, so that the driving force for the damage \(\frac{1} {2}\mathbb{C}(\zeta )(e(u-u_{\mathrm{D}}^{}(t))-\pi ): (e(u)-\pi )\) in the flow-rule (5.2.14b) is certainly in \(\mathrm{L}^{2}((0,T)\times \varOmega )\), and the technique from Example 5.2.3 now with the constraint \(0 \leq \zeta \leq 1\) can be used, in particular, \(\mathrm{div}((1+\vert \nabla \zeta \vert _{}^{2})_{}^{r/2-1}\nabla \zeta ) \in \mathrm{L}^{2}((0,T)\times \varOmega )\) and (5.2.14b) holds even a.e. (i.e., in the Carathéodory sense). A further important phenomenon is that assuming r > d, we have \(\zeta\) “compactly” in \(\mathrm{C}([0,T]\times \bar{\varOmega })\), and the dissipation energy \(\int _{[0,T]\times \bar{\varOmega }}[\boldsymbol{\delta }_{\varSigma (\zeta )}^{{\ast}}(\dot{\pi })](\mathrm{d}x\mathrm{d}t)\) is well defined as an integral of the continuous function \(s_{_{\mathrm{Y}}}(\zeta )\) via the measure \(\boldsymbol{\delta }_{B_{1}}(\dot{\pi })\) over the compact set \([0,T]\times \bar{\varOmega }\). Here, in limiting the time discretization, Corollary B.5.12 is employed.
 
10
More specifically, \(\mathbb{C} = \mathbb{C}(\zeta )\) was affine as a function of \(\zeta\) with \(\mathbb{C}(1)\) as in (4.​1.​10) with (4.​1.​24) with Young’s modulus \(E_{_{\mathrm{Young}}} = 27\,\) GPa and Poisson’s ratio \(\nu = 0.2\), \(\mathbb{C}(0) = \mathbb{C}(1)/10\), the elastic domain \(\varSigma (\zeta ):=\{\,\sigma \in \mathbb{R}d\times d \mathrm{dev} \;\vert \ \vert \sigma \vert \leq \zeta \sigma _{\mathrm{y}}\,\}\) with the “nondamaged” yield stress \(\sigma _{\mathrm{y}} = 2\,\) MPa, the dissipation potential a(⋅ ) in (5.2.15e) was \(a(\dot{z}):= a_{1}\dot{z}^{\,-} + a_{2}(\dot{z}^{\,-})^{2} + cb(\dot{z}^{\,+})^{2}\) with a 1 = 10 Pa, a 2 = 0. 1 Pa s, and c = 100 kPa s, while the damage stored energy \(b(\zeta ) = b_{0}\zeta\) in (5.2.15d) used b 0 = 10−3Pa, and the damage length-scale coefficient was κ = 10−6 J/m.
 
11
For the semistability itself, it would suffice to use weak convergence of u k and compactness of the trace operator \(v\mapsto [[v]]: \mathrm{H}^{1}(\varOmega \setminus \varGamma \mathrm{C}) \rightarrow \mathrm{L}^{2}(\varGamma \mathrm{C})\). Yet we will need strong convergence of u k for the energy inequality.
 
12
For the quasistatic case, i.e., M = 0, a semi-implicit scheme similar to (5.2.48) combined with a spatial discretization has been used in [259], where a rate-of-convergence estimate and uniqueness of the weak solution have been proved, assuming p = 2 and at most quadratic growth of \(\gamma\).
 
13
Here the inertia plays an important role for use of the Aubin–Lions lemma (Lemma B.5.8) on strong convergence of \(\dot{u}_{\tau } -\dot{ u} \rightarrow 0\) in \(\mathrm{L}^{2}(0,T; \mathrm{H}^{1-\epsilon }(\varOmega \setminus \varGamma \mathrm{C}; \mathbb{R}^{d}))\), so that the traces on \(\varGamma \mathrm{C}\) converge to zero \(\mathrm{L}^{2}(0,T; \mathrm{L}^{p^{\sharp }-\epsilon }(\varGamma \mathrm{C}; \mathbb{R}^{d}))\) for every \(0 <\epsilon \leq p^{\sharp } - 1\), similarly as in the proof of Proposition 5.2.15.
 
14
The numerical implementation, however, used a fully implicit formula together with the AMA algorithm; cf. also Remark 3.​6.​16.
 
15
Cf. also [532, Example 8.104] for similar calculations.
 
16
Reversible damage or delamination (i.e., allowing for healing) has been addressed routinely in the mathematical literature; cf. the monographs [560, 567]. If not combined with an inelastic strain allowing for permanent deformation as in Figure 4.​24 and Example 5.2.3, healing has a tendency to remember not only the original state of the material but also the original configuration. Such models have therefore only limited application to Robin-type but not Dirichlet loading.
 
17
A prototype is the linear heat equation \(\varDelta \theta = f\) on \(\varOmega \subset \mathbb{R}^{3}\) with zero Dirichlet boundary condition and a natural heat source \(f \in \mathrm{L}^{1}(\varOmega )\), whose nonvariational character can be seen from the fact that the formal variational problem \(\int _{\varOmega }\frac{1} {2}\vert \nabla \theta \vert ^{2} + f\theta \,\mathrm{d}x\) has the infimum \(-\infty \) if \(f\not\in \mathrm{L}^{6/5}(\varOmega )\), and the usual “variational” setting of \(\varDelta: \mathrm{H}_{0}^{1}(\varOmega ) \rightarrow \mathrm{H}^{-1}(\varOmega )\) does not work; cf. [532, Exercise 3.42].
 
18
In the C-Banach-algebra theory, this ordering is defined on a complexification of \(\boldsymbol{\varTheta }\), assuming that there exists a C algebra whose real variant (i.e., a “realization” by taking self-adjoint elements as in Example A.5.4) is \(\boldsymbol{\varTheta }\). Then \(\boldsymbol{\varTheta }^{{\ast}}\) is ordered standardly by the dual ordering, and its “realization” is then the ordering considered in (5.3.1). Yet it does not seem a general property and must be assumed. Anyhow, it is easily satisfied in concrete applications.
 
19
In fact, the existence of \(\boldsymbol{\vartheta }^{+} \geq \pmb{ 0}\) and \(\boldsymbol{\vartheta }^{\,-}\geq \pmb{ 0}\) satisfying (5.3.3a) together with \(\|\boldsymbol{\vartheta }\|_{\boldsymbol{\varTheta }^{{\ast}}}^{} =\|\boldsymbol{\vartheta } ^{+}\|_{\boldsymbol{\varTheta }^{{\ast}}}^{} +\|\boldsymbol{\vartheta } ^{\,-}\|_{\boldsymbol{\varTheta }^{{\ast}}}^{}\) is a standard result from the theory of C-algebras.
 
20
The first assumption is to avoid the term \(\boldsymbol{\theta }\partial _{\boldsymbol{z}\boldsymbol{\theta }}^{2}\varPsi (\boldsymbol{u},\boldsymbol{z},\boldsymbol{\theta })\dot{\boldsymbol{z}}\), which would involve a measure \(\dot{\boldsymbol{z}}\) multiplied by some functions that hardly can be continuous in time. In fact, it would suffice to assume \(\boldsymbol{\theta }\partial _{\boldsymbol{z}\boldsymbol{\theta }}^{2}\varPsi\) to be independent of \((\boldsymbol{u},\boldsymbol{z},\boldsymbol{\theta })\).
 
21
Following the scalar-valued case \(\boldsymbol{X} = \mathbb{R}\) presented in [608, Sect. XII.7], one can consider classes of equivalence of BV-functions coinciding with each other almost everywhere and then define \(\dot{\boldsymbol{z}}\) as a distributional derivative as in (B.5.13) but using the Lebesgue–Stieltjes integral, i.e., \(\langle \dot{\boldsymbol{z}},\varphi \rangle:= -\int _{0}^{T}\varphi \,\mathrm{d}\boldsymbol{z}(t)\) for all \(\varphi \in \mathcal{D}([0,T]\). Equivalently, one can consider left-continuous representatives in each such equivalence class, which would mean a possible modification of the original \(\boldsymbol{z}\) at at most a countable number of time instances.
 
22
See also [532, Rem. 12.12] for this simplified estimation technique.
 
23
For the comparison argument leading to positivity in a concrete continuous heat-transfer problem, see [184, Sect. 4.​2.​1] or in the time-discrete setting also [514].
 
24
Here we rely on the calculation \(\frac{1} {2}(\boldsymbol{a}^{\,-})^{2}-\frac{1} {2}(\boldsymbol{b}^{\,-})^{2}+(\boldsymbol{a}-\boldsymbol{b})\bullet \boldsymbol{a}^{\,-} = \frac{1} {2}(\boldsymbol{a}^{\,-})^{2}-\frac{1} {2}(\boldsymbol{b}^{\,-})^{2}+\boldsymbol{a}^{+}\bullet \boldsymbol{a}^{\,-}-\boldsymbol{a}^{\,-}\bullet \boldsymbol{a}^{\,-}-\boldsymbol{b}^{+}\bullet \boldsymbol{a}^{\,-}+\boldsymbol{b}^{\,-}\bullet \boldsymbol{a}^{\,-}\leq -\frac{1} {2}(\boldsymbol{a}^{\,-})^{2}-\frac{1} {2}(\boldsymbol{b}^{\,-})^{2}+\boldsymbol{b}^{\,-}\bullet \boldsymbol{a}^{\,-} = -\frac{1} {2}(\boldsymbol{a}^{\,-}-\boldsymbol{b}^{\,-})^{2} \leq 0\), where we used that \(\boldsymbol{a}^{+}\bullet \boldsymbol{a}^{\,-} =\pmb{ 0}\) and \(\boldsymbol{b}^{+}\bullet \boldsymbol{a}^{\,-}\geq \pmb{ 0}\) hold by the assumption (5.3.66).
 
25
In fact, (5.3.72) needs \((\boldsymbol{\vartheta }_{\tau }^{k})^{3} \in \boldsymbol{\varTheta }^{{\ast}}\), which in particular examples does not need to be assumed for d = 3, but in any case, the last equation in (5.3.72) holds by mollification arguments.
 
26
More specifically, heat capacity \(c_{\mathrm{v}} = 3.2\,\mathrm{M}\mathrm{J}\mathrm{m}^{-3}\mathrm{K}^{-1}\), \(\mathbb{K} =\kappa _{0}\mathbb{I}\), with heat-conduction coefficient \(\kappa _{0} = 80\,\mathrm{W}\mathrm{m}^{-1}\mathrm{K}^{-1}\), thermal-expansion coefficient \(\alpha = 2 \cdot 10^{-5}\mathrm{K}^{-1}\), Young’s modulus \(E_{_{\mathrm{Young}}} = 137\,\) GPa, Poisson ratio \(\nu = 0.3\), and plastic yield stress 450 MPa were used in the calculations.
 
27
Thus we preselect only some symmetric solutions of the original problem on \(\varOmega\). One should realize that due to lack of a rigorous uniqueness proof, only the whole set of solutions must be symmetric, and asymmetric solutions may exist. In any case, this set also contains some symmetric solutions, which can be proved just by applying the previous arguments to the reduced problem.
 
28
More specifically, for d = 3, this convergence was proved in [60], provided β > 2, \(\gamma >\max (76/17, 2\omega /(\omega -1))\), and \(\varepsilon (\tau ) = o(\tau ^{(\gamma +1)(\beta -1)/(\beta ^{2}\gamma ) })\), and the mesh parameter satisfies \(h \leq H(\tau )\) for some function H whose mere existence was shown only rather implicitly. The difficulty is that the nonnegativity of the (transformed) temperature does not seem guaranteed for spatial discretization (even on qualified triangulations), in contrast to mere time discretization based on Remark 5.3.13.
 
29
Note that for a smooth scalar-valued test function v, counting also symmetry of \(\mathbb{C}\) and \(\mathbb{E}\), we have \(\langle F(\vartheta )\bullet \dot{u},v\rangle =\langle F(\vartheta ),v\dot{u}\rangle =\int _{\varOmega }\mathcal{T} (\vartheta )\mathbb{E}: \mathbb{C}e(v\dot{u})\,\mathrm{d}x =\int _{\varOmega }\mathcal{T} (\vartheta )\mathbb{E}: \mathbb{C}(ve(\dot{u})+\frac{1} {2}\dot{u}\otimes \nabla v+\frac{1} {2}\nabla v\otimes \dot{u})\,\mathrm{d}x =\int _{\varOmega }(\mathcal{T} (\vartheta )\mathbb{C}: \mathbb{E}e(\dot{u}))v+\mathcal{T} (\vartheta )\mathbb{C}: \mathbb{E}(\dot{u}\otimes \nabla v)\,\mathrm{d}x\).
 
30
The piecewise-affine interpolant \(\lambda _{\tau }\) has classically defined piecewise-constant time derivative \(\dot{\lambda }_{\tau }\), while for its BV-limit \(\lambda\), the time derivative is meant in the sense of distributions; cf. (B.5.13). Then \(\boldsymbol{\delta }_{\varSigma _{0}}^{{\ast}}(\dot{\lambda })\) is the total variation of the measure \(\dot{\lambda }\) with respect to the (possibly asymmetric) norm \(\boldsymbol{\delta }_{\varSigma _{0}}^{{\ast}}(\dot{)}: \mathbb{R}^{N} \rightarrow \mathbb{R}\).
 
Literatur
8.
Zurück zum Zitat H.-D. Alber. Materials with Memory. Springer-Verlag, Berlin, 1998.MATH H.-D. Alber. Materials with Memory. Springer-Verlag, Berlin, 1998.MATH
21.
60.
Zurück zum Zitat S. Bartels and T. Roubíček. Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion. Math. Model. Numer. Anal., 45:477–504, 2011.MATHCrossRef S. Bartels and T. Roubíček. Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion. Math. Model. Numer. Anal., 45:477–504, 2011.MATHCrossRef
61.
Zurück zum Zitat S. Bartels and T. Roubíček. Numerical approaches to thermally coupled perfect plasticity. Numer. Meth. for Partial Diff. Equations, 29:1837–1863, 2013.MATH S. Bartels and T. Roubíček. Numerical approaches to thermally coupled perfect plasticity. Numer. Meth. for Partial Diff. Equations, 29:1837–1863, 2013.MATH
63.
Zurück zum Zitat A. Bedford. Hamilton’s Principle in Continuum Mechanics. Pitman, Boston, 1985.MATH A. Bedford. Hamilton’s Principle in Continuum Mechanics. Pitman, Boston, 1985.MATH
73.
Zurück zum Zitat L. Boccardo, A. Dall’aglio, T. Gallouët, and L. Orsina. Nonlinear parabolic equations with measure data. J. Funct. Anal., 147:237–258, 1997.MATHMathSciNetCrossRef L. Boccardo, A. Dall’aglio, T. Gallouët, and L. Orsina. Nonlinear parabolic equations with measure data. J. Funct. Anal., 147:237–258, 1997.MATHMathSciNetCrossRef
74.
Zurück zum Zitat L. Boccardo and T. Gallouët. Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal., 87:149–169, 1989.MATHMathSciNetCrossRef L. Boccardo and T. Gallouët. Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal., 87:149–169, 1989.MATHMathSciNetCrossRef
77.
Zurück zum Zitat E. Bonetti, G. Bonfanti, and R. Rossi. Global existence for a contact problem with adhesion. Math. Meth. Appl. Sci., 31:1029–1064, 2008.MATHMathSciNetCrossRef E. Bonetti, G. Bonfanti, and R. Rossi. Global existence for a contact problem with adhesion. Math. Meth. Appl. Sci., 31:1029–1064, 2008.MATHMathSciNetCrossRef
78.
Zurück zum Zitat E. Bonetti, G. Bonfanti, and R. Rossi. Thermal effects in adhesive contact: modelling and analysis. Nonlinearity, 22:2697–2731, 2009.MATHMathSciNetCrossRef E. Bonetti, G. Bonfanti, and R. Rossi. Thermal effects in adhesive contact: modelling and analysis. Nonlinearity, 22:2697–2731, 2009.MATHMathSciNetCrossRef
79.
Zurück zum Zitat E. Bonetti, G. Bonfanti, and R. Rossi. Long-time behaviour of a thermomechanical model for adhesive contact. Discr. Cont. Dynam. Systems - S, 4:273–309, 2011.MATHMathSciNet E. Bonetti, G. Bonfanti, and R. Rossi. Long-time behaviour of a thermomechanical model for adhesive contact. Discr. Cont. Dynam. Systems - S, 4:273–309, 2011.MATHMathSciNet
80.
Zurück zum Zitat E. Bonetti, G. Schimperna, and A. Segatti. On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Differential Equations, 218:91–116, 2005.MATHMathSciNetCrossRef E. Bonetti, G. Schimperna, and A. Segatti. On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Differential Equations, 218:91–116, 2005.MATHMathSciNetCrossRef
85.
Zurück zum Zitat E. Bouchbinder and J. S. Langer. Nonequilibrium thermodynamics of driven amorphous materials. II. Effective-temperature theory. Phys. Rev. E., 80:031132, 2009. E. Bouchbinder and J. S. Langer. Nonequilibrium thermodynamics of driven amorphous materials. II. Effective-temperature theory. Phys. Rev. E., 80:031132, 2009.
89.
Zurück zum Zitat B. Bourdin. Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound., 9:411–430, 2007.MATHMathSciNetCrossRef B. Bourdin. Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound., 9:411–430, 2007.MATHMathSciNetCrossRef
91.
92.
Zurück zum Zitat B. Bourdin, C. J. Larsen, and C. L. Richardson. A time-discrete model for dynamic fracture based on crack regularization. Int. J. of Fracture, pages 133–143, 2011. B. Bourdin, C. J. Larsen, and C. L. Richardson. A time-discrete model for dynamic fracture based on crack regularization. Int. J. of Fracture, pages 133–143, 2011.
106.
Zurück zum Zitat M. Bulíček, E. Feireisl, and J. Málek. A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlinear. Anal., Real World Appl., 10:992–1015, 2009. M. Bulíček, E. Feireisl, and J. Málek. A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlinear. Anal., Real World Appl., 10:992–1015, 2009.
107.
Zurück zum Zitat M. Bulíček, P. Kaplický, and J. Málek. An L 2-maximal regularity result for the evolutionary Stokes-Fourier system. Applic. Anal., 90:31–45, 2011.MATHCrossRef M. Bulíček, P. Kaplický, and J. Málek. An L 2-maximal regularity result for the evolutionary Stokes-Fourier system. Applic. Anal., 90:31–45, 2011.MATHCrossRef
114.
Zurück zum Zitat A. Chambolle, A. Giacomini, and M. Ponsiglione. Crack initiation in brittle materials. Arch. Rational Mech. Anal., 188:309–349, 2008.MATHMathSciNetCrossRef A. Chambolle, A. Giacomini, and M. Ponsiglione. Crack initiation in brittle materials. Arch. Rational Mech. Anal., 188:309–349, 2008.MATHMathSciNetCrossRef
133.
Zurück zum Zitat M. Comninou. Stress singularity at a sharp edge in contact problems with friction. Zeitschrift angew. Math. Physik, 27:493–499, 1976.CrossRef M. Comninou. Stress singularity at a sharp edge in contact problems with friction. Zeitschrift angew. Math. Physik, 27:493–499, 1976.CrossRef
149.
Zurück zum Zitat G. Dal Maso, G. A. Francfort, and R. Toader. Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal., 176:165–225, 2005.MATHMathSciNetCrossRef G. Dal Maso, G. A. Francfort, and R. Toader. Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal., 176:165–225, 2005.MATHMathSciNetCrossRef
158.
Zurück zum Zitat S. Demoulini. Weak solutions for a class of nonlinear systems of viscoelasticity. Arch. Rat. Mech. Anal., 155:299–334, 2000.MATHMathSciNetCrossRef S. Demoulini. Weak solutions for a class of nonlinear systems of viscoelasticity. Arch. Rat. Mech. Anal., 155:299–334, 2000.MATHMathSciNetCrossRef
178.
Zurück zum Zitat L. C. Evans. Entropy and Partial Differential Equations. UC Berkeley, Lecture notes, Dept. of Math., UC Berkeley, 1996. L. C. Evans. Entropy and Partial Differential Equations. UC Berkeley, Lecture notes, Dept. of Math., UC Berkeley, 1996.
184.
Zurück zum Zitat E. Feireisl, H. Petzeltová, and E. Rocca. Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci., 32:1345–1369, 2009.MATHMathSciNetCrossRef E. Feireisl, H. Petzeltová, and E. Rocca. Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci., 32:1345–1369, 2009.MATHMathSciNetCrossRef
185.
Zurück zum Zitat J. R. Fernández and M. Sofonea. Variational and numerical analysis of the signorini’s conctact problem in viscoplasticity with damage. J. Appl. Math., 2:87–114, 2003.CrossRef J. R. Fernández and M. Sofonea. Variational and numerical analysis of the signorini’s conctact problem in viscoplasticity with damage. J. Appl. Math., 2:87–114, 2003.CrossRef
217.
Zurück zum Zitat I. M. Gelfand, D. A. Raĭkov, and G. E. Shilov. Commutative Normed Rings (In Russian, 1960). Engl. transl.: Chelsea Publ., New York, 1964. I. M. Gelfand, D. A. Raĭkov, and G. E. Shilov. Commutative Normed Rings (In Russian, 1960). Engl. transl.: Chelsea Publ., New York, 1964.
223.
Zurück zum Zitat A. Giacomini and M. Ponsiglione. A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications. Arch. Rational Mech. Anal., 180:399–447, 2006.MATHMathSciNetCrossRef A. Giacomini and M. Ponsiglione. A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications. Arch. Rational Mech. Anal., 180:399–447, 2006.MATHMathSciNetCrossRef
255.
Zurück zum Zitat Y. Hamiel, V. Lyakhovsky, and Y. Ben-Zion. The elastic strain energy of damaged solids with applications to non-linear deformation of crystalline rocks. Pure Appl. Geophys., 168:2199–2210, 2011.CrossRef Y. Hamiel, V. Lyakhovsky, and Y. Ben-Zion. The elastic strain energy of damaged solids with applications to non-linear deformation of crystalline rocks. Pure Appl. Geophys., 168:2199–2210, 2011.CrossRef
259.
Zurück zum Zitat W. Han, M. Shillor, and M. Sofonea. Variational and numerical analysis of a quasistatic viscoelastic problem with normal complience, friction and damage. J. Comput. Appl. Math., 137:377–398, 2001.MATHMathSciNetCrossRef W. Han, M. Shillor, and M. Sofonea. Variational and numerical analysis of a quasistatic viscoelastic problem with normal complience, friction and damage. J. Comput. Appl. Math., 137:377–398, 2001.MATHMathSciNetCrossRef
330.
Zurück zum Zitat M. Kružík, C. G. Panagiotopoulos, and T. Roubíček. Quasistatic adhesive contact delaminating in mixed mode and its numerical treatment. Math. Mech. of Solids, 2014. in print. DOI: 10.1177/1081286513507942. M. Kružík, C. G. Panagiotopoulos, and T. Roubíček. Quasistatic adhesive contact delaminating in mixed mode and its numerical treatment. Math. Mech. of Solids, 2014. in print. DOI: 10.1177/1081286513507942.
340.
Zurück zum Zitat A. A. Kulikovski. Analytical Modelling of Fuel Cells. Elsevier, Amsterdam, 2010. A. A. Kulikovski. Analytical Modelling of Fuel Cells. Elsevier, Amsterdam, 2010.
348.
Zurück zum Zitat C. J. Larsen. Models for dynamic fracture based on griffith’s criterion. In K. Hackl, editor, IUTAM Symp. on Variational Concepts with Appl. to the Mech. of Mater., pages 131–140. Springer, 2010. Proceedings of the IUTAM Symposium on Variational Concepts, Bochum, Germany, Sept. 22–26, 2008. C. J. Larsen. Models for dynamic fracture based on griffith’s criterion. In K. Hackl, editor, IUTAM Symp. on Variational Concepts with Appl. to the Mech. of Mater., pages 131–140. Springer, 2010. Proceedings of the IUTAM Symposium on Variational Concepts, Bochum, Germany, Sept. 22–26, 2008.
350.
Zurück zum Zitat C. J. Larsen, C. Ortner, and E. Suli. Existence of solution to a regularized model of dynamic fracture. Math. Models Meth. Appl. Sci., 20:1021–1048, 2010.MATHMathSciNetCrossRef C. J. Larsen, C. Ortner, and E. Suli. Existence of solution to a regularized model of dynamic fracture. Math. Models Meth. Appl. Sci., 20:1021–1048, 2010.MATHMathSciNetCrossRef
368.
Zurück zum Zitat V. Lyakhovsky and Y. Ben-Zion. Scaling relations of earthquakes and aseismic deformation in a damage rheology model. Geophys. J. Int., 172:651–662, 2008.CrossRef V. Lyakhovsky and Y. Ben-Zion. Scaling relations of earthquakes and aseismic deformation in a damage rheology model. Geophys. J. Int., 172:651–662, 2008.CrossRef
369.
Zurück zum Zitat V. Lyakhovsky, Y. Ben-Zion, and A. Agnon. Distributed damage, faulting, and friction. J. Geophysical Res., 102:27,635–27,649, 1997.CrossRef V. Lyakhovsky, Y. Ben-Zion, and A. Agnon. Distributed damage, faulting, and friction. J. Geophysical Res., 102:27,635–27,649, 1997.CrossRef
370.
Zurück zum Zitat V. Lyakhovsky, Y. Hamiel, and Y. Ben-Zion. A non-local visco-elastic damage model and dynamic fracturing. J. Mech. Phys. Solids, 59:1752–1776, 2011.MATHMathSciNetCrossRef V. Lyakhovsky, Y. Hamiel, and Y. Ben-Zion. A non-local visco-elastic damage model and dynamic fracturing. J. Mech. Phys. Solids, 59:1752–1776, 2011.MATHMathSciNetCrossRef
371.
Zurück zum Zitat V. Lyakhovsky, Z. Reches, R. Weiberger, and T. E. Scott. Nonlinear elastic behaviour of damaged rocks. Geophys. J. Int., 130:157–166, 1997.CrossRef V. Lyakhovsky, Z. Reches, R. Weiberger, and T. E. Scott. Nonlinear elastic behaviour of damaged rocks. Geophys. J. Int., 130:157–166, 1997.CrossRef
407.
Zurück zum Zitat A. Mielke, A. Petrov, and J. A. C. Martins. Convergence of solutions of kinetic variational inequalities in the rate-independent quasiastatic limit. J. Math. Anal. Appl., 348:1012–1020, 2008.MATHMathSciNetCrossRef A. Mielke, A. Petrov, and J. A. C. Martins. Convergence of solutions of kinetic variational inequalities in the rate-independent quasiastatic limit. J. Math. Anal. Appl., 348:1012–1020, 2008.MATHMathSciNetCrossRef
422.
Zurück zum Zitat A. Mielke, T. Roubíček, and J. Zeman. Complete damage in elastic and viscoelastic media and its energetics. Comput. Methods Appl. Mech. Engrg., 199:1242–1253, 2010.MATHMathSciNetCrossRef A. Mielke, T. Roubíček, and J. Zeman. Complete damage in elastic and viscoelastic media and its energetics. Comput. Methods Appl. Mech. Engrg., 199:1242–1253, 2010.MATHMathSciNetCrossRef
466.
Zurück zum Zitat C. Padovani, G. Pasquinelli, and M. Šilhavý. Processes in masonry bodies and the dynamical significance of collapse. Math. Mech. Solids, 13:573–610, 2008.MATHMathSciNetCrossRef C. Padovani, G. Pasquinelli, and M. Šilhavý. Processes in masonry bodies and the dynamical significance of collapse. Math. Mech. Solids, 13:573–610, 2008.MATHMathSciNetCrossRef
469.
Zurück zum Zitat C. G. Panagiotopoulos, V. Mantič, and T. Roubíček. Two adhesive-contact models for quasistatic mixed-mode delamination problems. Math. Comput. in Simulation, 2014. Submitted. C. G. Panagiotopoulos, V. Mantič, and T. Roubíček. Two adhesive-contact models for quasistatic mixed-mode delamination problems. Math. Comput. in Simulation, 2014. Submitted.
470.
Zurück zum Zitat N. S. Papageorgiou. On the existence of solutions for nonlinear parabolic problems with nonmonotone discontinuities. J. Math. Anal. Appl., 205:434–453, 1997.MATHMathSciNetCrossRef N. S. Papageorgiou. On the existence of solutions for nonlinear parabolic problems with nonmonotone discontinuities. J. Math. Anal. Appl., 205:434–453, 1997.MATHMathSciNetCrossRef
483.
Zurück zum Zitat P. Podio Guidugli, T. Roubíček, and G. Tomassetti. A thermodynamically-consistent theory of the ferro/paramagnetic transition. Archive Rat. Mech. Anal., 198:1057–1094, 2010.MATHCrossRef P. Podio Guidugli, T. Roubíček, and G. Tomassetti. A thermodynamically-consistent theory of the ferro/paramagnetic transition. Archive Rat. Mech. Anal., 198:1057–1094, 2010.MATHCrossRef
497.
Zurück zum Zitat K. R. Rajagopal and T. Roubíček. On the effect of dissipation in shape-memory alloys. Nonlinear Anal., Real World Appl., 4:581–597, 2003. K. R. Rajagopal and T. Roubíček. On the effect of dissipation in shape-memory alloys. Nonlinear Anal., Real World Appl., 4:581–597, 2003.
508.
Zurück zum Zitat E. Rocca and R. Rossi. A degenerating PDE system for phase transitions and damage. Math. Models Methods Appl. Sci., 24:1265–1341, 2014.MATHMathSciNetCrossRef E. Rocca and R. Rossi. A degenerating PDE system for phase transitions and damage. Math. Models Methods Appl. Sci., 24:1265–1341, 2014.MATHMathSciNetCrossRef
514.
Zurück zum Zitat R. Rossi and T. Roubíček. Thermodynamics and analysis of rate-independent adhesive contact at small strains. Nonlinear Anal., 74:3159–3190, 2011.MATHMathSciNetCrossRef R. Rossi and T. Roubíček. Thermodynamics and analysis of rate-independent adhesive contact at small strains. Nonlinear Anal., 74:3159–3190, 2011.MATHMathSciNetCrossRef
515.
Zurück zum Zitat R. Rossi and T. Roubíček. Adhesive contact delaminating at mixed mode, its thermodynamics and analysis. Interfaces and Free Boundaries, 14:1–37, 2013.CrossRef R. Rossi and T. Roubíček. Adhesive contact delaminating at mixed mode, its thermodynamics and analysis. Interfaces and Free Boundaries, 14:1–37, 2013.CrossRef
517.
Zurück zum Zitat R. Rossi and M. Thomas. From an adhesive to a brittle delamination model in thermo-visco-elasticity. ESAIM Contr. Optim. Calc. Var., 21:1–59, 2015.MATHMathSciNetCrossRef R. Rossi and M. Thomas. From an adhesive to a brittle delamination model in thermo-visco-elasticity. ESAIM Contr. Optim. Calc. Var., 21:1–59, 2015.MATHMathSciNetCrossRef
526.
Zurück zum Zitat T. Roubíček. Rate independent processes in viscous solids at small strains. Math. Methods Appl. Sci., 32:825–862, 2009. Erratum Vol. 32(16) p. 2176. T. Roubíček. Rate independent processes in viscous solids at small strains. Math. Methods Appl. Sci., 32:825–862, 2009. Erratum Vol. 32(16) p. 2176.
528.
Zurück zum Zitat T. Roubíček. Thermodynamics of rate independent processes in viscous solids at small strains. SIAM J. Math. Anal., 42:256–297, 2010.MATHMathSciNetCrossRef T. Roubíček. Thermodynamics of rate independent processes in viscous solids at small strains. SIAM J. Math. Anal., 42:256–297, 2010.MATHMathSciNetCrossRef
532.
Zurück zum Zitat T. Roubíček. Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2nd edition, 2013.CrossRef T. Roubíček. Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2nd edition, 2013.CrossRef
533.
Zurück zum Zitat T. Roubíček. Thermodynamics of perfect plasticity. Discr. Cont. Dynam. Systems Ser. S, 6:193–214, 2013.MATHCrossRef T. Roubíček. Thermodynamics of perfect plasticity. Discr. Cont. Dynam. Systems Ser. S, 6:193–214, 2013.MATHCrossRef
546.
Zurück zum Zitat T. Roubíček, O. Souček, and R. Vodička. A model of rupturing lithospheric faults with re-occurringing earthquakes. SIAM J. Appl. Math., 73:1460–1488, 2013.MATHMathSciNetCrossRef T. Roubíček, O. Souček, and R. Vodička. A model of rupturing lithospheric faults with re-occurringing earthquakes. SIAM J. Appl. Math., 73:1460–1488, 2013.MATHMathSciNetCrossRef
549.
Zurück zum Zitat T. Roubíček and G. Tomassetti. Thermomechanics of demageable materials under diffusion: modeling and analysis. In preparation, 2015. T. Roubíček and G. Tomassetti. Thermomechanics of demageable materials under diffusion: modeling and analysis. In preparation, 2015.
551.
Zurück zum Zitat T. Roubíček and J. Valdman. Perfect plasticity with damage and healing at small strains, its modelling, analysis, and computer implementation. (Preprint arXiv 1505.01018), submitted, 2015. T. Roubíček and J. Valdman. Perfect plasticity with damage and healing at small strains, its modelling, analysis, and computer implementation. (Preprint arXiv 1505.01018), submitted, 2015.
560.
Zurück zum Zitat M. Shillor, M. Sofonea, and J. J. Telega. Models and Analysis of Quasistatic Contact. Springer, Berlin, 2004.MATHCrossRef M. Shillor, M. Sofonea, and J. J. Telega. Models and Analysis of Quasistatic Contact. Springer, Berlin, 2004.MATHCrossRef
567.
Zurück zum Zitat M. Sofonea, W. Han, and M. Shillor. Analysis and approximation of contact problems with adhesion or damage. Chapman & Hall/CRC, Boca Raton, FL, 2006.MATH M. Sofonea, W. Han, and M. Shillor. Analysis and approximation of contact problems with adhesion or damage. Chapman & Hall/CRC, Boca Raton, FL, 2006.MATH
608.
616.
Zurück zum Zitat R. Vodička, V. Mantič, and T. Roubíček. Quasistatic normal-compliance contact problem of visco-elastic bodies with Coulomb friction implemented by SGBEM/QP. Comp. Meth. Appl. Mechanics Engrg., 2015, submitted. R. Vodička, V. Mantič, and T. Roubíček. Quasistatic normal-compliance contact problem of visco-elastic bodies with Coulomb friction implemented by SGBEM/QP. Comp. Meth. Appl. Mechanics Engrg., 2015, submitted.
619.
Metadaten
Titel
Beyond rate-independence
verfasst von
Alexander Mielke
Tomàš Roubíček
Copyright-Jahr
2015
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2706-7_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.