Skip to main content

2022 | OriginalPaper | Buchkapitel

Space–Time Computational FSI and Flow Analysis: 2004 and Beyond

verfasst von : Tayfun E. Tezduyar, Kenji Takizawa, Takashi Kuraishi

Erschienen in: Current Trends and Open Problems in Computational Mechanics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The space–time (ST) computational fluid–structure interaction (FSI) and flow analysis started in 1990, with the inception of the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method. In 1990–2003, the DSD/SST enabled computational FSI and flow analysis in many complex engineering problems, including parachute FSI and fluid–particle interaction with 1000 spheres. In 2004, the DSD/SST enabled some of the earliest cardiovascular FSI analyses, and, in combination with the “quasi-direct coupling,” enabled more robust FSI analysis for very light structures, such as large parachutes. New core and special ST methods introduced in 2006 and 2007 enabled computational FSI analysis of the Orion spacecraft parachutes, with hundreds and gaps and slits that the flow goes through. In 2004, the first author also met the second author, which eventually led to a unique research collaboration and a new generation of ST methods. It also led to some of the most complex computational FSI and flow analyses, ranging from clusters of spacecraft parachutes with contact between the parachutes to heart valves to flow around tires with road contact and tire deformation. This chapter is the story of the ST computational FSI and flow analysis in 2004 and beyond.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tezduyar, T. E. (1992). Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics, 28, 1–44.MathSciNetMATH Tezduyar, T. E. (1992). Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics, 28, 1–44.MathSciNetMATH
2.
Zurück zum Zitat Brooks, A. N., & Hughes, T. J. R. (1982). Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32, 199–259.MathSciNetMATHCrossRef Brooks, A. N., & Hughes, T. J. R. (1982). Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32, 199–259.MathSciNetMATHCrossRef
3.
Zurück zum Zitat Tezduyar, T. E., Aliabadi, S. K., Behr, M., & Mittal, S. (1994). Massively parallel finite element simulation of compressible and incompressible flows. Computer Methods in Applied Mechanics and Engineering, 119, 157–177.MATHCrossRef Tezduyar, T. E., Aliabadi, S. K., Behr, M., & Mittal, S. (1994). Massively parallel finite element simulation of compressible and incompressible flows. Computer Methods in Applied Mechanics and Engineering, 119, 157–177.MATHCrossRef
4.
Zurück zum Zitat Hughes, T. J. R., & Tezduyar, T. E. (1984). Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Computer Methods in Applied Mechanics and Engineering, 45, 217–284.MathSciNetMATHCrossRef Hughes, T. J. R., & Tezduyar, T. E. (1984). Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Computer Methods in Applied Mechanics and Engineering, 45, 217–284.MathSciNetMATHCrossRef
5.
Zurück zum Zitat Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., & Mittal, S. (1993). Parallel finite-element computation of 3D flows. Computer, 26(10), 27–36.MATHCrossRef Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., & Mittal, S. (1993). Parallel finite-element computation of 3D flows. Computer, 26(10), 27–36.MATHCrossRef
6.
Zurück zum Zitat Johnson, A. A., & Tezduyar, T. E. (1996). Simulation of multiple spheres falling in a liquid-filled tube. Computer Methods in Applied Mechanics and Engineering, 134, 351–373.MathSciNetMATHCrossRef Johnson, A. A., & Tezduyar, T. E. (1996). Simulation of multiple spheres falling in a liquid-filled tube. Computer Methods in Applied Mechanics and Engineering, 134, 351–373.MathSciNetMATHCrossRef
7.
Zurück zum Zitat Johnson, A. A., & Tezduyar, T. E. (1997). 3D simulation of fluid-particle interactions with the number of particles reaching 100. Computer Methods in Applied Mechanics and Engineering, 145, 301–321.MATHCrossRef Johnson, A. A., & Tezduyar, T. E. (1997). 3D simulation of fluid-particle interactions with the number of particles reaching 100. Computer Methods in Applied Mechanics and Engineering, 145, 301–321.MATHCrossRef
8.
Zurück zum Zitat Johnson, A. A., & Tezduyar, T. E. (1999). Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics, 23, 130–143.MATHCrossRef Johnson, A. A., & Tezduyar, T. E. (1999). Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics, 23, 130–143.MATHCrossRef
9.
Zurück zum Zitat Johnson, A., & Tezduyar, T. (2001). Methods for 3D computation of fluid-object interactions in spatially-periodic flows. Computer Methods in Applied Mechanics and Engineering, 190, 3201–3221.MATHCrossRef Johnson, A., & Tezduyar, T. (2001). Methods for 3D computation of fluid-object interactions in spatially-periodic flows. Computer Methods in Applied Mechanics and Engineering, 190, 3201–3221.MATHCrossRef
10.
Zurück zum Zitat Kalro, V., & Tezduyar, T. (1998). A parallel finite element methodology for 3D computation of fluid–structure interactions in airdrop systems. In Proceedings of the 4th Japan-US symposium on finite element methods in large-scale computational fluid dynamics, Tokyo, Japan. Kalro, V., & Tezduyar, T. (1998). A parallel finite element methodology for 3D computation of fluid–structure interactions in airdrop systems. In Proceedings of the 4th Japan-US symposium on finite element methods in large-scale computational fluid dynamics, Tokyo, Japan.
11.
Zurück zum Zitat Tezduyar, T., & Osawa, Y. (2001). Fluid-structure interactions of a parachute crossing the far wake of an aircraft. Computer Methods in Applied Mechanics and Engineering, 191, 717–726.MATHCrossRef Tezduyar, T., & Osawa, Y. (2001). Fluid-structure interactions of a parachute crossing the far wake of an aircraft. Computer Methods in Applied Mechanics and Engineering, 191, 717–726.MATHCrossRef
12.
Zurück zum Zitat Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Kalro, V., & Litke, M. (1996). Flow simulation and high performance computing. Computational Mechanics, 18, 397–412.MATHCrossRef Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Kalro, V., & Litke, M. (1996). Flow simulation and high performance computing. Computational Mechanics, 18, 397–412.MATHCrossRef
13.
Zurück zum Zitat Torii, R., Oshima, M., Kobayashi, T., Takagi, K., & Tezduyar, T. E. (2004). Influence of wall elasticity on image-based blood flow simulations. Transactions of the Japan Society of Mechanical Engineers Series A, 70, 1224–1231. in Japanese.CrossRef Torii, R., Oshima, M., Kobayashi, T., Takagi, K., & Tezduyar, T. E. (2004). Influence of wall elasticity on image-based blood flow simulations. Transactions of the Japan Society of Mechanical Engineers Series A, 70, 1224–1231. in Japanese.CrossRef
14.
Zurück zum Zitat Tezduyar, T. E., Sathe, S., Keedy, R., & Stein, K. (2006). Space-time finite element techniques for computation of fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 195, 2002–2027.MathSciNetMATHCrossRef Tezduyar, T. E., Sathe, S., Keedy, R., & Stein, K. (2006). Space-time finite element techniques for computation of fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 195, 2002–2027.MathSciNetMATHCrossRef
15.
Zurück zum Zitat Sathe, S., Benney, R., Charles, R., Doucette, E., Miletti, J., Senga, M., Stein, K., & Tezduyar, T. E. (2007). Fluid-structure interaction modeling of complex parachute designs with the space-time finite element techniques. Computers & Fluids, 36, 127–135.MATHCrossRef Sathe, S., Benney, R., Charles, R., Doucette, E., Miletti, J., Senga, M., Stein, K., & Tezduyar, T. E. (2007). Fluid-structure interaction modeling of complex parachute designs with the space-time finite element techniques. Computers & Fluids, 36, 127–135.MATHCrossRef
16.
Zurück zum Zitat Tezduyar, T. E., & Sathe, S. (2007). Modeling of fluid-structure interactions with the space-time finite elements: Solution techniques. International Journal for Numerical Methods in Fluids, 54, 855–900.MathSciNetMATHCrossRef Tezduyar, T. E., & Sathe, S. (2007). Modeling of fluid-structure interactions with the space-time finite elements: Solution techniques. International Journal for Numerical Methods in Fluids, 54, 855–900.MathSciNetMATHCrossRef
17.
Zurück zum Zitat Tezduyar, T. E., Sathe, S., Pausewang, J., Schwaab, M., Christopher, J., & Crabtree, J. (2008). Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods. Computational Mechanics, 43, 39–49.MATHCrossRef Tezduyar, T. E., Sathe, S., Pausewang, J., Schwaab, M., Christopher, J., & Crabtree, J. (2008). Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods. Computational Mechanics, 43, 39–49.MATHCrossRef
18.
Zurück zum Zitat Takizawa, K., Wright, S., Moorman, C., & Tezduyar, T. E. (2011). Fluid-structure interaction modeling of parachute clusters. International Journal for Numerical Methods in Fluids, 65, 286–307.MATHCrossRef Takizawa, K., Wright, S., Moorman, C., & Tezduyar, T. E. (2011). Fluid-structure interaction modeling of parachute clusters. International Journal for Numerical Methods in Fluids, 65, 286–307.MATHCrossRef
19.
Zurück zum Zitat Takizawa, K., Moorman, C., Wright, S., Spielman, T., & Tezduyar, T. E. (2011). Fluid-structure interaction modeling and performance analysis of the Orion spacecraft parachutes. International Journal for Numerical Methods in Fluids, 65, 271–285.MATHCrossRef Takizawa, K., Moorman, C., Wright, S., Spielman, T., & Tezduyar, T. E. (2011). Fluid-structure interaction modeling and performance analysis of the Orion spacecraft parachutes. International Journal for Numerical Methods in Fluids, 65, 271–285.MATHCrossRef
20.
Zurück zum Zitat Takizawa, K., & Tezduyar, T. E. (2011). Multiscale space-time fluid-structure interaction techniques. Computational Mechanics, 48, 247–267.MathSciNetMATHCrossRef Takizawa, K., & Tezduyar, T. E. (2011). Multiscale space-time fluid-structure interaction techniques. Computational Mechanics, 48, 247–267.MathSciNetMATHCrossRef
21.
Zurück zum Zitat Hughes, T. J. R. (1995). Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering, 127, 387–401.MathSciNetMATHCrossRef Hughes, T. J. R. (1995). Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering, 127, 387–401.MathSciNetMATHCrossRef
22.
Zurück zum Zitat Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194, 4135–4195.MathSciNetMATHCrossRef Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194, 4135–4195.MathSciNetMATHCrossRef
23.
Zurück zum Zitat Takizawa, K., Henicke, B., Puntel, A., Spielman, T., & Tezduyar, T. E. (2012). Space-time computational techniques for the aerodynamics of flapping wings. Journal of Applied Mechanics, 79, 010903. Takizawa, K., Henicke, B., Puntel, A., Spielman, T., & Tezduyar, T. E. (2012). Space-time computational techniques for the aerodynamics of flapping wings. Journal of Applied Mechanics, 79, 010903.
24.
Zurück zum Zitat Takizawa, K., Schjodt, K., Puntel, A., Kostov, N., & Tezduyar, T. E. (2012). Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Computational Mechanics, 50, 675–686.MathSciNetMATHCrossRef Takizawa, K., Schjodt, K., Puntel, A., Kostov, N., & Tezduyar, T. E. (2012). Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Computational Mechanics, 50, 675–686.MathSciNetMATHCrossRef
25.
Zurück zum Zitat Takizawa, K., Fritze, M., Montes, D., Spielman, T., & Tezduyar, T. E. (2012). Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Computational Mechanics, 50, 835–854.CrossRef Takizawa, K., Fritze, M., Montes, D., Spielman, T., & Tezduyar, T. E. (2012). Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Computational Mechanics, 50, 835–854.CrossRef
26.
Zurück zum Zitat Takizawa, K., Montes, D., Fritze, M., McIntyre, S., Boben, J., & Tezduyar, T. E. (2013). Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Mathematical Models and Methods in Applied Sciences, 23, 307–338.MathSciNetMATHCrossRef Takizawa, K., Montes, D., Fritze, M., McIntyre, S., Boben, J., & Tezduyar, T. E. (2013). Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Mathematical Models and Methods in Applied Sciences, 23, 307–338.MathSciNetMATHCrossRef
27.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., McIntyre, S., Kostov, N., Kolesar, R., & Habluetzel, C. (2014). Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Computational Mechanics, 53, 1–15.MATHCrossRef Takizawa, K., Tezduyar, T. E., McIntyre, S., Kostov, N., Kolesar, R., & Habluetzel, C. (2014). Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Computational Mechanics, 53, 1–15.MATHCrossRef
28.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Boben, J., Kostov, N., Boswell, C., & Buscher, A. (2013). Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Computational Mechanics, 52, 1351–1364.MATHCrossRef Takizawa, K., Tezduyar, T. E., Boben, J., Kostov, N., Boswell, C., & Buscher, A. (2013). Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Computational Mechanics, 52, 1351–1364.MATHCrossRef
29.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Buscher, A., & Asada, S. (2014). Space-time interface-tracking with topology change (ST-TC). Computational Mechanics, 54, 955–971.MathSciNetMATHCrossRef Takizawa, K., Tezduyar, T. E., Buscher, A., & Asada, S. (2014). Space-time interface-tracking with topology change (ST-TC). Computational Mechanics, 54, 955–971.MathSciNetMATHCrossRef
30.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Buscher, A., & Asada, S. (2014). Space-time fluid mechanics computation of heart valve models. Computational Mechanics, 54, 973–986.MATHCrossRef Takizawa, K., Tezduyar, T. E., Buscher, A., & Asada, S. (2014). Space-time fluid mechanics computation of heart valve models. Computational Mechanics, 54, 973–986.MATHCrossRef
31.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Boswell, C., Kolesar, R., & Montel, K. (2014). FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Computational Mechanics, 54, 1203–1220.CrossRef Takizawa, K., Tezduyar, T. E., Boswell, C., Kolesar, R., & Montel, K. (2014). FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Computational Mechanics, 54, 1203–1220.CrossRef
32.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., & Kuraishi, T. (2015). Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Mathematical Models and Methods in Applied Sciences, 25, 2227–2255.MathSciNetMATHCrossRef Takizawa, K., Tezduyar, T. E., & Kuraishi, T. (2015). Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Mathematical Models and Methods in Applied Sciences, 25, 2227–2255.MathSciNetMATHCrossRef
33.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Mochizuki, H., Hattori, H., Mei, S., Pan, L., & Montel, K. (2015). Space-time VMS method for flow computations with slip interfaces (ST-SI). Mathematical Models and Methods in Applied Sciences, 25, 2377–2406.MathSciNetMATHCrossRef Takizawa, K., Tezduyar, T. E., Mochizuki, H., Hattori, H., Mei, S., Pan, L., & Montel, K. (2015). Space-time VMS method for flow computations with slip interfaces (ST-SI). Mathematical Models and Methods in Applied Sciences, 25, 2377–2406.MathSciNetMATHCrossRef
34.
Zurück zum Zitat Bazilevs, Y., & Hughes, T. J. R. (2008). NURBS-based isogeometric analysis for the computation of flows about rotating components. Computational Mechanics, 43, 143–150.MATHCrossRef Bazilevs, Y., & Hughes, T. J. R. (2008). NURBS-based isogeometric analysis for the computation of flows about rotating components. Computational Mechanics, 43, 143–150.MATHCrossRef
35.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Kuraishi, T., Tabata, S., & Takagi, H. (2016). Computational thermo-fluid analysis of a disk brake. Computational Mechanics, 57, 965–977.MathSciNetMATHCrossRef Takizawa, K., Tezduyar, T. E., Kuraishi, T., Tabata, S., & Takagi, H. (2016). Computational thermo-fluid analysis of a disk brake. Computational Mechanics, 57, 965–977.MathSciNetMATHCrossRef
36.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Otoguro, Y., Terahara, T., Kuraishi, T., & Hattori, H. (2017). Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA). Computers & Fluids, 142, 15–20.MathSciNetMATHCrossRef Takizawa, K., Tezduyar, T. E., Otoguro, Y., Terahara, T., Kuraishi, T., & Hattori, H. (2017). Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA). Computers & Fluids, 142, 15–20.MathSciNetMATHCrossRef
37.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Asada, S., & Kuraishi, T. (2016). Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Computers & Fluids, 141, 124–134.MathSciNetMATHCrossRef Takizawa, K., Tezduyar, T. E., Asada, S., & Kuraishi, T. (2016). Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Computers & Fluids, 141, 124–134.MathSciNetMATHCrossRef
38.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., & Terahara, T. (2016). Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA). Computers & Fluids, 141, 191–200.MathSciNetMATHCrossRef Takizawa, K., Tezduyar, T. E., & Terahara, T. (2016). Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA). Computers & Fluids, 141, 191–200.MathSciNetMATHCrossRef
39.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., Terahara, T., & Sasaki, T. (2017). Heart valve flow computation with the integrated Space-Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods. Computers & Fluids, 158, 176–188.MathSciNetMATHCrossRef Takizawa, K., Tezduyar, T. E., Terahara, T., & Sasaki, T. (2017). Heart valve flow computation with the integrated Space-Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods. Computers & Fluids, 158, 176–188.MathSciNetMATHCrossRef
40.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., & Kanai, T. (2017). Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity. Mathematical Models and Methods in Applied Sciences, 27, 771–806.MathSciNetMATHCrossRef Takizawa, K., Tezduyar, T. E., & Kanai, T. (2017). Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity. Mathematical Models and Methods in Applied Sciences, 27, 771–806.MathSciNetMATHCrossRef
41.
Zurück zum Zitat Kuraishi, T., Takizawa, K., & Tezduyar, T. E. (2019). Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. Computational Mechanics, 64, 1699–1718.MATHCrossRef Kuraishi, T., Takizawa, K., & Tezduyar, T. E. (2019). Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. Computational Mechanics, 64, 1699–1718.MATHCrossRef
42.
Zurück zum Zitat Otoguro, Y., Takizawa, K., Tezduyar, T. E., Nagaoka, K., & Mei, S. (2019). Turbocharger turbine and exhaust manifold flow computation with the Space-Time Variational Multiscale Method and Isogeometric Analysis. Computers & Fluids, 179, 764–776.MathSciNetMATHCrossRef Otoguro, Y., Takizawa, K., Tezduyar, T. E., Nagaoka, K., & Mei, S. (2019). Turbocharger turbine and exhaust manifold flow computation with the Space-Time Variational Multiscale Method and Isogeometric Analysis. Computers & Fluids, 179, 764–776.MathSciNetMATHCrossRef
43.
Zurück zum Zitat Kanai, T., Takizawa, K., Tezduyar, T. E., Komiya, K., Kaneko, M., Hirota, K., Nohmi, M., Tsuneda, T., Kawai, M., & Isono, M. (2019). Methods for computation of flow-driven string dynamics in a pump and residence time. Mathematical Models and Methods in Applied Sciences, 29, 839–870.MathSciNetMATHCrossRef Kanai, T., Takizawa, K., Tezduyar, T. E., Komiya, K., Kaneko, M., Hirota, K., Nohmi, M., Tsuneda, T., Kawai, M., & Isono, M. (2019). Methods for computation of flow-driven string dynamics in a pump and residence time. Mathematical Models and Methods in Applied Sciences, 29, 839–870.MathSciNetMATHCrossRef
44.
Zurück zum Zitat Kanai, T., Takizawa, K., Tezduyar, T. E., Tanaka, T., & Hartmann, A. (2019). Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization. Computational Mechanics, 63, 301–321.MathSciNetMATHCrossRef Kanai, T., Takizawa, K., Tezduyar, T. E., Tanaka, T., & Hartmann, A. (2019). Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization. Computational Mechanics, 63, 301–321.MathSciNetMATHCrossRef
45.
Zurück zum Zitat Kuraishi, T., Takizawa, K., & Tezduyar, T. E. (2019). Tire aerodynamics with actual tire geometry, road contact and tire deformation. Computational Mechanics, 63, 1165–1185.MathSciNetMATHCrossRef Kuraishi, T., Takizawa, K., & Tezduyar, T. E. (2019). Tire aerodynamics with actual tire geometry, road contact and tire deformation. Computational Mechanics, 63, 1165–1185.MathSciNetMATHCrossRef
46.
Zurück zum Zitat Kuraishi, T., Takizawa, K., & Tezduyar, T. E. (2019). Space-Time Isogeometric flow analysis with built-in Reynolds-equation limit. Mathematical Models and Methods in Applied Sciences, 29, 871–904.MathSciNetMATHCrossRef Kuraishi, T., Takizawa, K., & Tezduyar, T. E. (2019). Space-Time Isogeometric flow analysis with built-in Reynolds-equation limit. Mathematical Models and Methods in Applied Sciences, 29, 871–904.MathSciNetMATHCrossRef
47.
Zurück zum Zitat Terahara, T., Takizawa, K., Tezduyar, T. E., Tsushima, A., & Shiozaki, K. (2020). Ventricle-valve-aorta flow analysis with the Space-Time Isogeometric Discretization and Topology Change. Computational Mechanics, 65, 1343–1363.MathSciNetMATHCrossRef Terahara, T., Takizawa, K., Tezduyar, T. E., Tsushima, A., & Shiozaki, K. (2020). Ventricle-valve-aorta flow analysis with the Space-Time Isogeometric Discretization and Topology Change. Computational Mechanics, 65, 1343–1363.MathSciNetMATHCrossRef
48.
Zurück zum Zitat Takizawa, K., Tezduyar, T. E., & Avsar, R. (2020). A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state. Computational Mechanics, 65, 1567–1591.MathSciNetMATHCrossRef Takizawa, K., Tezduyar, T. E., & Avsar, R. (2020). A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state. Computational Mechanics, 65, 1567–1591.MathSciNetMATHCrossRef
49.
Zurück zum Zitat Otoguro, Y., Mochizuki, H., Takizawa, K., & Tezduyar, T. E. (2020). Space-time variational multiscale isogeometric analysis of a tsunami-shelter vertical-axis wind turbine. Computational Mechanics, 66, 1443–1460.MathSciNetMATHCrossRef Otoguro, Y., Mochizuki, H., Takizawa, K., & Tezduyar, T. E. (2020). Space-time variational multiscale isogeometric analysis of a tsunami-shelter vertical-axis wind turbine. Computational Mechanics, 66, 1443–1460.MathSciNetMATHCrossRef
Metadaten
Titel
Space–Time Computational FSI and Flow Analysis: 2004 and Beyond
verfasst von
Tayfun E. Tezduyar
Kenji Takizawa
Takashi Kuraishi
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-87312-7_52

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.