Skip to main content

2016 | OriginalPaper | Buchkapitel

Microalgae Applications in Wastewater Treatment

verfasst von : Ismail Rawat, Sanjay K. Gupta, Amritanshu Shriwastav, Poonam Singh, Sheena Kumari, Faizal Bux

Erschienen in: Algae Biotechnology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Algal wastewater treatment is effective in the removal of nutrients (C, N and P), coliform bacteria, heavy metals and the reduction of chemical and biological oxygen demand, removal and/or degradation of xenobiotic compounds and other contaminants. Microalgae wastewater treatment technologies have long been in existence; however, uptake of the technology to date has been limited mainly due to considerations of land requirements and volumes of wastewater to be treated. This chapter gives an overview of algal applications in wastewater treatment with specific reference to nutrient removal, phycoremediation of heavy metals, high-rate algal ponds, symbiosis of algae with bacteria for wastewater treatment, and utilisation of wastewater-grown microalgae.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
  1. Abdel-raouf, N., Al-homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19, 257–275.View Article
  2. Arbib, Z., Ruiz, J., Álvarez-díaz, P., Garrido-pérez, C., Barragan, J., & Perales, J. A. (2013). Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecological Engineering, 52, 143–153.View Article
  3. Arceivala, S. J., & Asolekar, S. R. (2007). Wastewater treatment for pollution control and reuse. Noida: Tata McGraw-Hill.
  4. Aziz, M. A., & Ng, W. J. (1992). Feasibility of wastewater treatment using the activated-algae process. Bioresource Technology, 40, 205–208.
  5. Babu, B. V., & Gupta, S. (2008). Adsorption of Cr(VI) using activated neem leaves: kinetic studies. Adsorption, 14, 85–92.View Article
  6. Batista, A. P., Ambrosano, L., Graca, S., Sousa, C., Marques, P. A., Ribeiro, B., et al. (2015). Combining urban wastewater treatment with biohydrogen production—An integrated microalgae-based approach. Bioresource Technology, 184, 230–235.
  7. Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20, 264–271.
  8. Bell, W. H., Lang, J. M., & Mitchell, R. (1974). Selective stimulation of marine bacteria by algal extracellular products. Limnology and Oceanography, 19, 833–839.View Article
  9. Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., & Wijffels, R. H. (2011). Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research, 45, 5925–5933.View Article
  10. Borowitzka, M. A. (2013). High-value products from microalgae—Their development and commercialisation. Journal of Applied Phycology, 25, 743–756.View Article
  11. Braissant, O. (2010). Ammonia toxicity to the brain: Effects on creatine metabolism and transport and protective roles of creatine. Molecular Genetics and Metabolism, 100, S53–S58.View Article
  12. Brockett, O. D. (1977). Nitrogenous compounds in facultative oxidation pond sediments. Water Research, 11, 317–321.View Article
  13. Bryan, N. S., Alexander, D. D., Coughlin, J. R., Milkowski, A. L., & Boffetta, P. (2012). Ingested nitrate and nitrite and stomach cancer risk: An updated review. Food and Chemical Toxicology, 50, 3646–3665.View Article
  14. Cabanelas, I. T. D., Arbib, Z., Chinalia, F. A., Souza, C. O., Perales, J. A., Almeida, P. F., et al. (2013). From waste to energy: Microalgae production in wastewater and glycerol. Applied Energy, 109, 283–290.View Article
  15. Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.
  16. Cardozo, K. H., GuaratinI, T., Barros, M. P., Falcao, V. R., Tonon, A. P., Lopes, N. P., CampoS, S., TorreS, M. A., Souza, A. O., Colepicolo, P. & PInto, E. 2007. Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol, 146, 60–78.
  17. Chiaramonti, D., Prussi, M., Casini, D., Tredici, M. R., Rodolfi, L., Bassi, N., et al. (2013). Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Applied Energy, 102, 101–111.View Article
  18. Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9), 3097–3105.
  19. Cho, D. Y., Lee, S. T., Park, S. W., & Chung, A. S. (1994). Studies on the biosorption of heavy metals onto Chlorella vulgaris. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology, 29, 389–409.
  20. Cho, S., Lee, N., park, S., Yu, J., Luong, T. T., Oh, Y. K., & Lee, T. (2013). Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresource Technology, 131, 515–520.
  21. Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., et al. (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323, 1014–1015.View Article
  22. De Philippis, R., Colica, G., & Micheletti, E. (2011). Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: Molecular basis and practical applicability of the biosorption process. Applied Microbiology and Biotechnology, 92, 697–708.
  23. De-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research, 38, 4222–4246.
  24. Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926–929.View Article
  25. Dortch, Q., Clayton, J. R., JR., Thoresen, S. S., & Ahmed, S. I. (1984). Species differences in accumulation of nitrogen pools in phytoplankton. Marine Biology, 81, 237–250.
  26. Doshi, H., Ray, A., & Kothari, I. L. (2007). Biosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studies. Current Microbiology, 54, 213–218.
  27. Droop, M. R. (1968). Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis Lutheri. Journal of the Marine Biological Association of the United Kingdom, 48, 689–733.View Article
  28. Droop, M. R. (1974). The nutrient status of algal cells in continuous culture. Journal of the Marine Biological Association of the United Kingdom, 54, 825–855.View Article
  29. Dueñas, J. F., Alonso, J. R., Rey, À. F., & Ferrer, A. S. (2003). Characterisation of phosphorous forms in wastewater treatment plants. Journal of Hazardous Materials, 97, 193–205.View Article
  30. Metcalf & Eddy, I., Tchobanoglous, G., & Burton, F. L. (1998). Wastewater engineering: Treatment, disposal and reuse. New Delhi: Tata McGraw-Hill Publishing Company Limited.
  31. Flynn, K. J., Fasham, M. J. R., & Hipkin, C. R. (1997). Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Philosophical Transactions: Biological Sciences, 352, 1625–1645.View Article
  32. Fourest, E., & Volesky, B. (1997). Alginate properties and heavy metal biosorption by marine algae. Applied Biochemistry and Biotechnology, 67, 215–226.View Article
  33. Fukami, K., Nishijima, T., & Ishida, Y. (1997). Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia, 358, 185–191.View Article
  34. García, J., Mujeriego, R., & Hernández-Mariné, M. (2000). High rate algal pond operating strategies for urban wastewater nitrogen removal. Journal of Applied Phycology, 12, 331–339.View Article
  35. Goldman, J. C. (1979). Outdoor algal mass cultures—I. Applications Water Research, 13, 1–19.View Article
  36. Gonzalez, L. E., & Bashan, Y. (2000). Increased growth of the microalga chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology, 66, 1527–1531.View Article
  37. Green, F. B., Lundquist, T. J., Quinn, N. W., Zarate, M. A., Zubieta, I. X., & Oswald, W. J. (2003). Selenium and nitrate removal from agricultural drainage using the AIWPS technology. Water Science and Technology, 48, 299–305.
  38. Gupta, V. K., & Rastogi, A. (2008). Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—A comparative study. Colloids and Surfaces B: Biointerfaces, 64, 170–178.View Article
  39. Gupta, V. K., Rastogi, A., Saini, V. K., & Jain, N. (2006). Biosorption of copper(II) from aqueous solutions by Spirogyra species. Journal of Colloid and Interface Science, 296, 59–63.View Article
  40. Han, L., Pei, H., Hu, W., Han, F., Song, M., & Zhang, S. (2014). Nutrient removal and lipid accumulation properties of newly isolated microalgal strains. Bioresource Technology, 165, 38–41.
  41. Hongyang, S., Yalei, Z., Chunmin, Z., Xuefei, Z., & Jinpeng, L. (2011). Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technology, 102(21), 9884–9890.
  42. Imase, M., WatanabE, K., Aoyagi, H., & Tanaka, H. (2008). Construction of an artificial symbiotic community using a Chlorella–symbiont association as a model. FEMS Microbiology Ecology, 63, 273–282.View Article
  43. Ke, H.-Y. D., Anderson, W. L., Moncrief, R. M., Rayson, G. D., & Jackson, P. J. (1994). Luminescence studies of metal ion-binding sites on datura innoxia biomaterial. Environmental Science and Technology, 28, 586–591.View Article
  44. Khin, T., & Annachhatre, A. P. (2004). Novel microbial nitrogen removal processes. Biotechnology Advances, 22, 519–532.View Article
  45. Klausmeier, C. A., Litchman, E., & Levin, S. A. (2004). Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnology and Oceanography, 49, 1463–1470.View Article
  46. Leadbeater, B. S. C. (2006). The ‘Droop Equation’-Michael droop and the legacy of the ‘Cell-Quota Model’ of phytoplankton growth. Protist, 157, 345–358.View Article
  47. Liu, J., Huang, J., Jiang, Y. & Chen, F. 2012. Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol, 107, 393–8.
  48. Mahapatra, D., Chanakya, H. N., & Ramachandra, T. V. (2013). Treatment efficacy of algae-based sewage treatment plants. Environmental Monitoring and Assessment, 185, 7145–7164.View Article
  49. Munoz, R., & Guieysse, B. (2006). Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Research, 40, 2799–2815.View Article
  50. Muñoz, R., Guieysse, B., & Mattiasson, B. (2003a). Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Applied Microbiology and Biotechnology, 61, 261–267.View Article
  51. Muñoz, R., Jacinto, M., GuieyssE, B., & Mattiasson, B. (2005). combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors. Applied Microbiology and Biotechnology, 67, 699–707.View Article
  52. Muñoz, R., Köllner, C., Guieysse, B., & Mattiasson, B. (2003b). Salicylate biodegradation by various algal-bacterial consortia under photosynthetic oxygenation. Biotechnology Letters, 25, 1905–1911.View Article
  53. Nambiar, K. R., & Bokil, S. D. (1981). Luxury uptake of nitrogen in flocculating algal-bacterial system. Water Research, 15, 667–669.View Article
  54. Nurdogan, Y., & Oswald, W. J. (1995). Enhanced nutrient removal in high-rate ponds. Water Science and Technology, 31, 33–43.View Article
  55. Olguí, E. J. (2003). Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnology Advances, 22, 81–91.View Article
  56. Olguín, E. J. (2012). Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnology Advances, 30, 1031–1046.View Article
  57. Olguín, E. J., Galicia, S., Mercado, G., & Pérez, T. (2003). Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied Phycology, 15, 249–257.View Article
  58. Oswald, W. J. (1990). Advanced integrated wastewater pond systems. San Francisco, CA: ASCE Convention EE Div/ASCE.
  59. Oswald, W. J., Gotaas, H. B., Golueke, C. G., Kellen, W. R., Gloyna, E. F., & Hermann, E. R. (1957). Algae in waste treatment. Sewage and Industrial Wastes, 29, 437–457.
  60. Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102, 35–42.View Article
  61. Powell, N., Shilton, A., Chisti, Y., & Pratt, S. (2009). Towards a luxury uptake process via microalgae—Defining the polyphosphate dynamics. Water Research, 43, 4207–4213.View Article
  62. Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635–648.
  63. Qin, S., Liu, G. X., & Hu, Z. Y. (2008). The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (chlorophyceae). Process biochemistry, 43, 795–802.
  64. Ramanna, L., Guldhe, A., Rawat, I., & Bux, F. (2014). The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour Technol, 168, 127–35.
  65. Rasoul-amini, S., Montazeri-najafabady, N., Shaker, S., Safari, A., Kazemi, A., Mousavi, P., et al. (2014). Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system. Biocatalysis and Agricultural Biotechnology, 3, 126–131.View Article
  66. Raungsomboon, S., Chidthaisong, A., Bunnag, B., Inthorn, D., & Harvey, N. W. (2008). Removal of lead (Pb2+) by the Cyanobacterium Gloeocapsa sp. Bioresource technology, 99, 5650–5658.View Article
  67. Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88, 3411–3424.View Article
  68. Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46(230A), 205–221.
  69. Richmond, A. (1992). Open systems for the mass production of photoautotrophic microalgae outdoors: Physiological principles. Journal of Applied Phycology, 4, 281–286.View Article
  70. Riquelme, C. E., Fukami, K., & Ishida, Y. (1987). Annual fluctuations of phytoplankton and bacterial communities in maizuru bay and their interrelationship. Nihon Biseibutsu Seitai Gakkaiho (Bulletin of Japanese Society of Microbial Ecology), 2, 29–37.View Article
  71. Romero-González, M. E., WilliamS, C. J., & Gardiner, P. H. E. (2001). Study of the mechanisms of cadmium biosorption by dealginated seaweed waste. Environmental Science and Technology, 35, 3025–3030.View Article
  72. Ryu, B.-G., kim, E., Kim, H.-S., Kim, J., Choi, Y.-E., & Yang, J.-W. (2014). Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnology and Bioprocess Engineering, 19, 201–210.
  73. Sandau, E., Sandau, P., & Pulz, O. (1996). Heavy metal sorption by microalgae. Acta Biotechnologica, 16, 227–235.
  74. Saqqar, M. M., & PescoD, M. B. (1996). Performance evaluation of anoxic and facultative wastewater stabilization ponds. Water Science and Technology, 33, 141–145.View Article
  75. SaradA, R., Pillai, M. G., & Ravishankar, G. A. (1999). Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 34, 795–801.View Article
  76. Schiewer, S., & Volesky, B. (1995). Modeling of the proton-metal ion exchange in biosorption. Environmental Science and Technology, 29, 3049–3058.View Article
  77. Shi, Y., Sheng, J., Yang, F., & Hu, Q. (2007). Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food Chemistry, 103, 101–105.
  78. Singh, B., Guldhe, A., Rawat, I., & bux, F. (2014). Towards a sustainable approach for development of biodiesel from plant and microalgae. Renewable and Sustainable Energy Reviews, 29, 216–245.
  79. Singh, B., Guldhe, A., Singh, P., Singh, A., Rawat, I., & Bux, F. (2015). Sustainable production of biofuels from microalgae using a biorefinary approach. In G. Kaushik (Ed.), Applied environmental biotechnology: Present scenario and future trends (pp. 115–128). India: Springer.
  80. Singh, R. N., & Sharma, S. (2012). Development of suitable photobioreactor for algae production—A Review. Renewable and Sustainable Energy Reviews, 16, 2347–2353.
  81. Skjanes, K., RebourS, C., & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology, 33, 172–215.View Article
  82. Spolaore, P., Joannis-cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.View Article
  83. Tadesse, I., Green, F. B., & Puhakka, J. A. (2004). Seasonal and diurnal variations of temperature, pH and dissolved oxygen in advanced integrated wastewater pond system® treating tannery effluent. Water Research, 38, 645–654.View Article
  84. Tadesse, I., Isoaho, S. A., Green, F. B., & puhakka, J. A. (2006). Lime enhanced chromium removal in advanced integrated wastewater pond system. Bioresource Technology, 97, 529–534.
  85. Terry, P. A., & Stone, W. (2002). Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere, 47, 249–255.
  86. Travies, O. L., Benítez, F., Sánchez, E., BorjA, R., Martín, A., & Colmenarejo, M. F. (2006). Batch mixed culture of chlorella vulgaris using settled and diluted piggery waste. Ecological Engineering, 28, 158–165.
  87. Vanthoor-Koopmans, M., WIjffels, R. H., Barbosa, M. J., & Eppink, M. H. (2013). Biorefinery of microalgae for food and fuel. Bioresource Technology, 135, 142–149.
  88. Watanabe, K., Imase, M., AoyagI, H., OhmurA, N., saiki, H., & tanaka, H. (2008). Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs. Journal of Applied Microbiology, 105, 741–751.
  89. Wayama, M., Ota, S., Matsuura, H., Nango, N., Hirata, A., & Kawano, S. (2013). Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS One, 8, e53618.
  90. Wilde, E. W., & Benemann, J. R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances, 11, 781–812.View Article
  91. Yen, H. W., Hu, I. C., Chen, C. Y., HO, S. H., Lee, D. J. et al. (2013). Microalgae-based biorefinery—From biofuels to natural products. Bioresource Technology, 135, 166–174.
  92. Zhang, E., Wang, B., Wang, Q., ZhanG, S., & Zhao, B. (2008). Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. Isolated from municipal wastewater for potential use in tertiary treatment. Bioresource Technology, 99, 3787–3793.View Article
Metadaten
Titel
Microalgae Applications in Wastewater Treatment
verfasst von
Ismail Rawat
Sanjay K. Gupta
Amritanshu Shriwastav
Poonam Singh
Sheena Kumari
Faizal Bux
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-12334-9_13