Skip to main content

2013 | OriginalPaper | Buchkapitel

12. Inelastic Composite Materials

verfasst von : George J. Dvorak

Erschienen in: Micromechanics of Composite Materials

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Initial applications of elastic–plastic and other inelastic constitutive relations in predicting overall response of heterogeneous materials had focused on polycrystalline metals, modeled as a multiphase system of randomly orientated single crystal grains which were assigned certain yield conditions and slip mechanisms. Early work includes the slip theory of Batdorf and Budiansky (1949), the rigid-plastic single crystal system of Bishop and Hill (1951), the elastic–plastic K.B.W. model of Kröner (1961) and the self-consistent approximation by Hershey (1954) and by Budiansky and Wu (1962). Further developed by Hill (1965c, 1967) and implemented by Hutchinson (1970), the SCM approximation extended the elasticity form of the method to polycrystals and two-phase composites. That and numerous other extensions of elastic micromechanical methods to inelastic systems provide an interface with the latter. However, they often assume uniform elastic and inelastic deformation in each grain, or in the entire matrix of a particulate or fibrous composite, according to a specified constitutive relation. Since local deformation is not uniform, the overall response predicted by such theories is not supported by experiments, as shown in Sect. 12.2.2. Nonuniform local deformation was examined on composite cylinders under axisymmetric and thermal loads, and in shakedown state, by Dvorak and Rao (1976a, b), Tarn, et al. (1975). General loading effects were investigated with models which constrained only longitudinal deformation by elastic fibers (Dvorak and Bahei-El-Din 1979, 1980, 1982). More recent work, supported by numerical methods, has focused on realistic aspects of deformation mechanisms of polycrystals and composites, as reviewed by Dawson, Hutchinson, Torquato and others in a report on research trends in solid mechanics (Dvorak 1999).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aboudi, J. (1991). Mechanics of composite materials – A unified micromechanical approach. Amsterdam: Elsevier.MATH Aboudi, J. (1991). Mechanics of composite materials – A unified micromechanical approach. Amsterdam: Elsevier.MATH
Zurück zum Zitat Accorsi, M. L., & Nemat-Nasser, S. (1986). Bounds on the overall elastic and instantaneous elastoplastic moduli of periodic composites. Mechanics of Materials, 5, 209–220.CrossRef Accorsi, M. L., & Nemat-Nasser, S. (1986). Bounds on the overall elastic and instantaneous elastoplastic moduli of periodic composites. Mechanics of Materials, 5, 209–220.CrossRef
Zurück zum Zitat Bahei-El-Din, Y. A. (1992). Uniform fields, yielding and thermal hardening in fibrous composite laminates. International Journal of Plasticity, 8, 867–892.CrossRefMATH Bahei-El-Din, Y. A. (1992). Uniform fields, yielding and thermal hardening in fibrous composite laminates. International Journal of Plasticity, 8, 867–892.CrossRefMATH
Zurück zum Zitat Bahei-El-Din, Y. A. (1996). Finite element analysis of viscoplastic composite materials and structures. Mechanics of Composite Materials and Structures, 3, 1–28.CrossRef Bahei-El-Din, Y. A. (1996). Finite element analysis of viscoplastic composite materials and structures. Mechanics of Composite Materials and Structures, 3, 1–28.CrossRef
Zurück zum Zitat Bahei-El-Din, Y. A. (2009). Modeling electromechanical coupling in woven composites exhibiting damage. Journal of Aerospace Engineering, Proceedings of the Institution of Mechanical Engineering, 223(Part G), 485–495.CrossRef Bahei-El-Din, Y. A. (2009). Modeling electromechanical coupling in woven composites exhibiting damage. Journal of Aerospace Engineering, Proceedings of the Institution of Mechanical Engineering, 223(Part G), 485–495.CrossRef
Zurück zum Zitat Bahei-El-Din, Y. A., & Dvorak, G. J. (2000). Micromechanics of inelastic composite materials. In A. Kelly & C. Zweben (Eds.), Comprehensive composite materials. In T.-W. Chou (Eds.), I: Fiber Reinforcements and General Theory of Composites, Ch. 1.14. Amsterdam: Elsevier Science B. V., pp. 403–430. Bahei-El-Din, Y. A., & Dvorak, G. J. (2000). Micromechanics of inelastic composite materials. In A. Kelly & C. Zweben (Eds.), Comprehensive composite materials. In T.-W. Chou (Eds.), I: Fiber Reinforcements and General Theory of Composites, Ch. 1.14. Amsterdam: Elsevier Science B. V., pp. 403–430.
Zurück zum Zitat Bahei-El-Din, Y. A., Dvorak, G. J., & Wu, J. F. (1989). Fracture of fibrous metal matrix composites – II. Modeling and numerical analysis. Engineering Fracture Mechanics, 34, 105–123.CrossRef Bahei-El-Din, Y. A., Dvorak, G. J., & Wu, J. F. (1989). Fracture of fibrous metal matrix composites – II. Modeling and numerical analysis. Engineering Fracture Mechanics, 34, 105–123.CrossRef
Zurück zum Zitat Bahei-El-Din, Y. A., Khire, R., & Hajela, P. (2010). Multiscale transformation field analysis of progressive damage in fibrous laminates. International Journal of Multiscale Computational Engineering, 8, 69–80.CrossRef Bahei-El-Din, Y. A., Khire, R., & Hajela, P. (2010). Multiscale transformation field analysis of progressive damage in fibrous laminates. International Journal of Multiscale Computational Engineering, 8, 69–80.CrossRef
Zurück zum Zitat Batdorf, S. B., & Budiansky, B. (1949). A matrhmatical theory of plasticity based on the concept of slip (Techical Note 1871). Washington, DC: National Advisory Committee for Aeronautics. Batdorf, S. B., & Budiansky, B. (1949). A matrhmatical theory of plasticity based on the concept of slip (Techical Note 1871). Washington, DC: National Advisory Committee for Aeronautics.
Zurück zum Zitat Baweja, S., Dvorak, G. J., & Bazant, Z. P. (1998). Composite model for basic creep of concrete. Journal of Engineering Mechanics, 124, 959–965.CrossRef Baweja, S., Dvorak, G. J., & Bazant, Z. P. (1998). Composite model for basic creep of concrete. Journal of Engineering Mechanics, 124, 959–965.CrossRef
Zurück zum Zitat Benveniste, Y. (1987a). A new approach to the application of Mori-Tanaka theory in composite materials. Mechanics of Materials, 6, 147–157.CrossRef Benveniste, Y. (1987a). A new approach to the application of Mori-Tanaka theory in composite materials. Mechanics of Materials, 6, 147–157.CrossRef
Zurück zum Zitat Benveniste, Y. (1987b). A differential effective medium theory with a composite sphere embedding. ASME Journal of Applied Mechanics, 54, 466–468.CrossRef Benveniste, Y. (1987b). A differential effective medium theory with a composite sphere embedding. ASME Journal of Applied Mechanics, 54, 466–468.CrossRef
Zurück zum Zitat Bishop, J. F. W., & Hill, R. (1951). A theory of the plastic distortion of a polycrystalline aggregate under combined stress. Philosophical Magazine, 42, 414–427.MathSciNetMATH Bishop, J. F. W., & Hill, R. (1951). A theory of the plastic distortion of a polycrystalline aggregate under combined stress. Philosophical Magazine, 42, 414–427.MathSciNetMATH
Zurück zum Zitat Brockenbrough, J. R., Suresh, S., & Wienecke, H. A. (1991). Deformation of fiber-reinforced metal-matrix composites: Geometrical effects of fiber shape and distribution. Acta Metallurgica et Materialia, 39, 735–752.CrossRef Brockenbrough, J. R., Suresh, S., & Wienecke, H. A. (1991). Deformation of fiber-reinforced metal-matrix composites: Geometrical effects of fiber shape and distribution. Acta Metallurgica et Materialia, 39, 735–752.CrossRef
Zurück zum Zitat Budiansky, B., & Wu, T. T. (1962). Theoretical prediction of plastic strains of polycrystals. In Proceedings of the Fourth U. S. National Congress of Applied Mechanics (pp. 1175–1185). New York: ASME. Budiansky, B., & Wu, T. T. (1962). Theoretical prediction of plastic strains of polycrystals. In Proceedings of the Fourth U. S. National Congress of Applied Mechanics (pp. 1175–1185). New York: ASME.
Zurück zum Zitat Chaboche, J.-L. (1989). Constitutive equations for cyclic plasticity and visco-plasticity. International Journal of Plasticity, 5, 274–302.CrossRef Chaboche, J.-L. (1989). Constitutive equations for cyclic plasticity and visco-plasticity. International Journal of Plasticity, 5, 274–302.CrossRef
Zurück zum Zitat Chaboche, J. L., Kruch, S., & Pottier, T. (1998). Micromechanics versus macromechanics: A combined approach for the metal matrix composites constitutive modelling. European Journal of Mechanics – A/Solids, 17, 885–908.MathSciNetCrossRefMATH Chaboche, J. L., Kruch, S., & Pottier, T. (1998). Micromechanics versus macromechanics: A combined approach for the metal matrix composites constitutive modelling. European Journal of Mechanics – A/Solids, 17, 885–908.MathSciNetCrossRefMATH
Zurück zum Zitat Chaboche, J. L., Kruch, S., Maire, J. F., & Pottier, T. (2001). Towards a micromechanics based inelastic and damage modeling of composites. International Journal of Plasticity, 17, 411–439.CrossRefMATH Chaboche, J. L., Kruch, S., Maire, J. F., & Pottier, T. (2001). Towards a micromechanics based inelastic and damage modeling of composites. International Journal of Plasticity, 17, 411–439.CrossRefMATH
Zurück zum Zitat Chaboche, J. L., Kanoute, P., & Roos, A. (2005). On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites. International Journal of Plasticity, 21, 1409–1434.CrossRefMATH Chaboche, J. L., Kanoute, P., & Roos, A. (2005). On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites. International Journal of Plasticity, 21, 1409–1434.CrossRefMATH
Zurück zum Zitat Christensen, R. M. (1969). Viscoelastic properties of heterogeneous media. Journal of the Mechanics and Physics of Solids, 17, 23.CrossRef Christensen, R. M. (1969). Viscoelastic properties of heterogeneous media. Journal of the Mechanics and Physics of Solids, 17, 23.CrossRef
Zurück zum Zitat Christensen, R. M. (1998). Two theoretical elasticity micromechanics models. Journal of Elasticity, 50, 15–25.CrossRefMATH Christensen, R. M. (1998). Two theoretical elasticity micromechanics models. Journal of Elasticity, 50, 15–25.CrossRefMATH
Zurück zum Zitat Christensen, R. M. (2003). Mechanics of cellular and other low density materials. International Journal of Solids and Structures, 37, 93–104.CrossRef Christensen, R. M. (2003). Mechanics of cellular and other low density materials. International Journal of Solids and Structures, 37, 93–104.CrossRef
Zurück zum Zitat deBotton, G., & Ponte Castañeda, P. (1993). Elastoplastic constitutive relations for fiber-reinforced solids. International Journal of Solids and Structures, 30, 1865–1890.CrossRefMATH deBotton, G., & Ponte Castañeda, P. (1993). Elastoplastic constitutive relations for fiber-reinforced solids. International Journal of Solids and Structures, 30, 1865–1890.CrossRefMATH
Zurück zum Zitat Dvorak, G. J. (1992). Transformation field analysis of inelastic composite materials. Proceedings of the Royal Society London, A437, 311–327.MathSciNetCrossRef Dvorak, G. J. (1992). Transformation field analysis of inelastic composite materials. Proceedings of the Royal Society London, A437, 311–327.MathSciNetCrossRef
Zurück zum Zitat Dvorak, G. J. (Ed.) (1999) Research trends in solid mechanics, a Report from the U.S. National Committee on Theoretical and Applied Mechanics. Oxford: Elsevier Science Ltd. Also in International Journal of Solids and Structures 37(1&2) (2000). Dvorak, G. J. (Ed.) (1999) Research trends in solid mechanics, a Report from the U.S. National Committee on Theoretical and Applied Mechanics. Oxford: Elsevier Science Ltd. Also in International Journal of Solids and Structures 37(1&2) (2000).
Zurück zum Zitat Dvorak, G. J., & Bahei-El-Din, Y. A. (1987). A bimodal plasticity of theory of fibrous composite materials. Acta Mechanica, 69, 219–241.CrossRefMATH Dvorak, G. J., & Bahei-El-Din, Y. A. (1987). A bimodal plasticity of theory of fibrous composite materials. Acta Mechanica, 69, 219–241.CrossRefMATH
Zurück zum Zitat Dvorak, G. J., & Teply, J. (1985). Periodic hexagonal array models for plasticity analysis of composite materials. In A. Sawczuk & V. Bianchi (Eds.), Plasticity today: Modeling, methods and applications (W. Olszak memorial volume, pp. 623–642). Amsterdam: Elsevier Scientific Publishing Company. Dvorak, G. J., & Teply, J. (1985). Periodic hexagonal array models for plasticity analysis of composite materials. In A. Sawczuk & V. Bianchi (Eds.), Plasticity today: Modeling, methods and applications (W. Olszak memorial volume, pp. 623–642). Amsterdam: Elsevier Scientific Publishing Company.
Zurück zum Zitat Dvorak, G. J., Rao, M. S. M., & Tarn, J. Q. (1974). Generalized yield surfaces for unidirectional composites. Journal of Applied Mechanics, 41, 249–253.CrossRef Dvorak, G. J., Rao, M. S. M., & Tarn, J. Q. (1974). Generalized yield surfaces for unidirectional composites. Journal of Applied Mechanics, 41, 249–253.CrossRef
Zurück zum Zitat Dvorak, G. J., Bahei-El-Din, Y. A., Macheret, Y., & Liu, C. H. (1988). An experimental study of elastic-plastic behavior of fibrous boron-aluminum composites. Journal of the Mechanics and Physics of Solids, 36, 665–687.CrossRef Dvorak, G. J., Bahei-El-Din, Y. A., Macheret, Y., & Liu, C. H. (1988). An experimental study of elastic-plastic behavior of fibrous boron-aluminum composites. Journal of the Mechanics and Physics of Solids, 36, 665–687.CrossRef
Zurück zum Zitat Dvorak, G. J., Bahei-El-Din, Y. A., Shah, R., & Nigam, H. (1991). Experiments and modeling in plasticity of fibrous composites. In G. J. Dvorak (Ed.), Inelastic deformation of composite materials (pp. 270–293). New York: Springer.CrossRef Dvorak, G. J., Bahei-El-Din, Y. A., Shah, R., & Nigam, H. (1991). Experiments and modeling in plasticity of fibrous composites. In G. J. Dvorak (Ed.), Inelastic deformation of composite materials (pp. 270–293). New York: Springer.CrossRef
Zurück zum Zitat Dvorak, G. J., Bahei-El-Din, Y. A., & Wafa, A. M. (1994). Implementation of the transformation field analysis for inelastic composite materials. Computational Mechanics, 14, 201–228.CrossRefMATH Dvorak, G. J., Bahei-El-Din, Y. A., & Wafa, A. M. (1994). Implementation of the transformation field analysis for inelastic composite materials. Computational Mechanics, 14, 201–228.CrossRefMATH
Zurück zum Zitat Farez, N., & Dvorak, G. J. (1989). Large elastic-plastic deformations of fibrous metal matrix composites. Journal of the Mechanics and Physics of Solids, 39, 725–744.CrossRef Farez, N., & Dvorak, G. J. (1989). Large elastic-plastic deformations of fibrous metal matrix composites. Journal of the Mechanics and Physics of Solids, 39, 725–744.CrossRef
Zurück zum Zitat Farez, N., & Dvorak, G. J. (1993). Finite deformation constitutive relations for elastic-plastic fibrous metal matrix composites. Journal of Applied Mechanics, 60, 619–625.CrossRef Farez, N., & Dvorak, G. J. (1993). Finite deformation constitutive relations for elastic-plastic fibrous metal matrix composites. Journal of Applied Mechanics, 60, 619–625.CrossRef
Zurück zum Zitat Findley, W. N., Lai, J. S., & Onaran, K. (1976). Creep and relaxation of nonlinear viscoelastic materials. Amsterdam: North Holland Publishing Co.MATH Findley, W. N., Lai, J. S., & Onaran, K. (1976). Creep and relaxation of nonlinear viscoelastic materials. Amsterdam: North Holland Publishing Co.MATH
Zurück zum Zitat Fish, J., & Shek, K. L. (1999). Finite deformation plasticity of composite structures: Computational models and adaptive strategies. Computer Methods in Applied Mechanics and Engineering, 172, 145–174.CrossRefMATH Fish, J., & Shek, K. L. (1999). Finite deformation plasticity of composite structures: Computational models and adaptive strategies. Computer Methods in Applied Mechanics and Engineering, 172, 145–174.CrossRefMATH
Zurück zum Zitat Fish, J., Shek, K. L., Shephard, M. S., & Pandheeradi, M. (1997). Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. Computer Methods in Applied Mechanics and Engineering, 157, 69–94.MathSciNet Fish, J., Shek, K. L., Shephard, M. S., & Pandheeradi, M. (1997). Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. Computer Methods in Applied Mechanics and Engineering, 157, 69–94.MathSciNet
Zurück zum Zitat Fish, J., Yu, Q., & Shek, K. L. (1999). Computational damage mechanics for composite materials based on mathematical homogenization. International Journal for Numerical Methods in Engineering, 45, 1657–1679.CrossRefMATH Fish, J., Yu, Q., & Shek, K. L. (1999). Computational damage mechanics for composite materials based on mathematical homogenization. International Journal for Numerical Methods in Engineering, 45, 1657–1679.CrossRefMATH
Zurück zum Zitat Freed, A. D., & Walker, K. P. (1993). Viscoplasticity with creep and plasticity bounds. International Journal of Plasticity, 9, 213–242.CrossRefMATH Freed, A. D., & Walker, K. P. (1993). Viscoplasticity with creep and plasticity bounds. International Journal of Plasticity, 9, 213–242.CrossRefMATH
Zurück zum Zitat Gavazzi, A. C., & Lagoudas, D. C. (1990). On the numerical evaluation of Eshelby’s tensor and its application to elastoplastic fibrous composites. Computational Mechanics, 7, 13–19.CrossRef Gavazzi, A. C., & Lagoudas, D. C. (1990). On the numerical evaluation of Eshelby’s tensor and its application to elastoplastic fibrous composites. Computational Mechanics, 7, 13–19.CrossRef
Zurück zum Zitat Ghahremani, F. (1977). Numerical evaluation of the stresses and strains in ellipsoidalinclusions in an anisotropic elastic material. Mechanics Research Communications, 4, 89–91.CrossRef Ghahremani, F. (1977). Numerical evaluation of the stresses and strains in ellipsoidalinclusions in an anisotropic elastic material. Mechanics Research Communications, 4, 89–91.CrossRef
Zurück zum Zitat Hashin, Z. (1970). Complex moduli of viscoelastic composites I. General theory and applications to particulate composites. International Journal of Solids and Structures, 6, 539–552.CrossRefMATH Hashin, Z. (1970). Complex moduli of viscoelastic composites I. General theory and applications to particulate composites. International Journal of Solids and Structures, 6, 539–552.CrossRefMATH
Zurück zum Zitat Hershey, A. V. (1954). The elasticity of an isotropic aggregate of anisotropic cubic crystals. ASME Journal of Applied Mechanics, 21, 236–240.MATH Hershey, A. V. (1954). The elasticity of an isotropic aggregate of anisotropic cubic crystals. ASME Journal of Applied Mechanics, 21, 236–240.MATH
Zurück zum Zitat Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society London, A193, 281–297.CrossRef Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society London, A193, 281–297.CrossRef
Zurück zum Zitat Hill, R. (1965c). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213–222.CrossRef Hill, R. (1965c). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213–222.CrossRef
Zurück zum Zitat Hill, R. (1967). The essential structure of constitutive laws for metal composites and polycrystals. Journal of the Mechanics and Physics of Solids, 15, 79–95.CrossRef Hill, R. (1967). The essential structure of constitutive laws for metal composites and polycrystals. Journal of the Mechanics and Physics of Solids, 15, 79–95.CrossRef
Zurück zum Zitat Hutchinson, J. W. (1970). Elastic-plastic behaviour of polyrystalline metals and composites. Proceedings of the Royal Society London, A319, 247–272.CrossRef Hutchinson, J. W. (1970). Elastic-plastic behaviour of polyrystalline metals and composites. Proceedings of the Royal Society London, A319, 247–272.CrossRef
Zurück zum Zitat Kanoute, P., Boso, D. P., Chaboche, J. L., & Schrefler, B. A. (2009). Multiscale methods for composites: A review. Archives of Computational Methods in Engineering, 16, 31–75.CrossRefMATH Kanoute, P., Boso, D. P., Chaboche, J. L., & Schrefler, B. A. (2009). Multiscale methods for composites: A review. Archives of Computational Methods in Engineering, 16, 31–75.CrossRefMATH
Zurück zum Zitat Kattan, P., & Voyiadjis, G. (1993). Overall damage and elastoplastic deformation in fibrous metal matrix composites. International Journal of Plasticity, 9, 931–949.CrossRefMATH Kattan, P., & Voyiadjis, G. (1993). Overall damage and elastoplastic deformation in fibrous metal matrix composites. International Journal of Plasticity, 9, 931–949.CrossRefMATH
Zurück zum Zitat Knauss, W. G., & Emri, I. J. (1981). Non-linear viscoelasticity based on free volume consideration. Computers and Structures, 13, 123–128.CrossRefMATH Knauss, W. G., & Emri, I. J. (1981). Non-linear viscoelasticity based on free volume consideration. Computers and Structures, 13, 123–128.CrossRefMATH
Zurück zum Zitat Krempl, E. (2000). Visoplastic models for high temperature applications. International Journal of Solids and Structures, 37, 279–291.CrossRefMATH Krempl, E. (2000). Visoplastic models for high temperature applications. International Journal of Solids and Structures, 37, 279–291.CrossRefMATH
Zurück zum Zitat Lissenden, C. J. (2010). Experimental investigation of initial and subsequent yield surfaces for laminated metal matrix composites. International Journal of Plasticity, 26, 1606–1628.CrossRefMATH Lissenden, C. J. (2010). Experimental investigation of initial and subsequent yield surfaces for laminated metal matrix composites. International Journal of Plasticity, 26, 1606–1628.CrossRefMATH
Zurück zum Zitat Michel, J. C., & Suquet, P. (2003). Nonuniform transformation field analysis. International Journal of Solids and Structures, 40, 6937–6955.MathSciNetCrossRefMATH Michel, J. C., & Suquet, P. (2003). Nonuniform transformation field analysis. International Journal of Solids and Structures, 40, 6937–6955.MathSciNetCrossRefMATH
Zurück zum Zitat Miller, M. F., Christian, J. L., & Wennhold, W. F. (1973). Design, manufacture, development, test and evaluation of boron/aluminum structural components for Space Shuttle. General Dynamics/Convair Aerospace (Contract No. NAS 8-27738). Miller, M. F., Christian, J. L., & Wennhold, W. F. (1973). Design, manufacture, development, test and evaluation of boron/aluminum structural components for Space Shuttle. General Dynamics/Convair Aerospace (Contract No. NAS 8-27738).
Zurück zum Zitat Moulinec, H., & Suquet, P. (1994). A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes Rendus de I’Academie des Sciences Paris, 318(Ser. II), 1417–1423.MATH Moulinec, H., & Suquet, P. (1994). A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes Rendus de I’Academie des Sciences Paris, 318(Ser. II), 1417–1423.MATH
Zurück zum Zitat Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1967). A continuum model for fibre-reinforced plastic materials. Proceedings of the Royal Society London, A301, 473–492.CrossRef Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1967). A continuum model for fibre-reinforced plastic materials. Proceedings of the Royal Society London, A301, 473–492.CrossRef
Zurück zum Zitat Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1969). A continuum theory of a plastic-elastic fibre-reinforced material. International Journal of Engineering Science, 7, 129–152.CrossRefMATH Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1969). A continuum theory of a plastic-elastic fibre-reinforced material. International Journal of Engineering Science, 7, 129–152.CrossRefMATH
Zurück zum Zitat Nemat-Nasser, S. (1992). Phenomenological theories of elastoplasticity and strain localization at high strain rates. Applied Mechanics Reviews, 45, 519–545.MathSciNetCrossRef Nemat-Nasser, S. (1992). Phenomenological theories of elastoplasticity and strain localization at high strain rates. Applied Mechanics Reviews, 45, 519–545.MathSciNetCrossRef
Zurück zum Zitat Nemat-Nasser, S. (2004). Plasticity: A treatise on finite deformation of heterogeneous inelastic materials. Cambridge: Cambridge University Press. Nemat-Nasser, S. (2004). Plasticity: A treatise on finite deformation of heterogeneous inelastic materials. Cambridge: Cambridge University Press.
Zurück zum Zitat Nemat-Nasser, S., & Hori, M. (1999). Micromechanics: Overall properties of hetero-geneous materials (2nd ed.). Amsterdam: Elsevier. Nemat-Nasser, S., & Hori, M. (1999). Micromechanics: Overall properties of hetero-geneous materials (2nd ed.). Amsterdam: Elsevier.
Zurück zum Zitat Nigam, H., Dvorak, G. J., & Bahei-El-Din, Y. A. (1994). An experimental investigation of elastic-plastic behavior of a fibrous boron-aluminum composite: I. Matrix-dominated mode. II. Fiber dominated mode. International Journal of Plasticity, 10, 23–62.CrossRef Nigam, H., Dvorak, G. J., & Bahei-El-Din, Y. A. (1994). An experimental investigation of elastic-plastic behavior of a fibrous boron-aluminum composite: I. Matrix-dominated mode. II. Fiber dominated mode. International Journal of Plasticity, 10, 23–62.CrossRef
Zurück zum Zitat Oskay, C., & Fish, J. (2007). Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 196, 1216–1243.MathSciNetCrossRefMATH Oskay, C., & Fish, J. (2007). Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 196, 1216–1243.MathSciNetCrossRefMATH
Zurück zum Zitat Phillips, A., & Weng, G. J. (1975). An analytical study of an experimentally verified hardening law. Journal of Applied Mechanics, 42, 375–378.CrossRef Phillips, A., & Weng, G. J. (1975). An analytical study of an experimentally verified hardening law. Journal of Applied Mechanics, 42, 375–378.CrossRef
Zurück zum Zitat Ponte Castaneda, P. (1991). The effective mechanical properties of nonlinear isotropic composites. Journal of the Mechanics and Physics of Solids, 39, 45–71.MathSciNetCrossRefMATH Ponte Castaneda, P. (1991). The effective mechanical properties of nonlinear isotropic composites. Journal of the Mechanics and Physics of Solids, 39, 45–71.MathSciNetCrossRefMATH
Zurück zum Zitat Ponte Castaneda, P. (1996). A second-order theory for nonlinear composite materials. Computes Rendus de I’Academie des Sciences Paris, 322(Série II b), 3–10.MATH Ponte Castaneda, P. (1996). A second-order theory for nonlinear composite materials. Computes Rendus de I’Academie des Sciences Paris, 322(Série II b), 3–10.MATH
Zurück zum Zitat Ponte Castaneda, P., & Suquet, P. (1998). Nonlinear composites. Advances in Applied Mechanics, 34, 171–302.CrossRef Ponte Castaneda, P., & Suquet, P. (1998). Nonlinear composites. Advances in Applied Mechanics, 34, 171–302.CrossRef
Zurück zum Zitat Ponte Castaneda, P., & Willis, J. R. (1995). The effect of spatial distribution on the effective behavior of composite materials and cracked media. Journal of the Mechanics and Physics of Solids, 43, 1919–1951.MathSciNetCrossRefMATH Ponte Castaneda, P., & Willis, J. R. (1995). The effect of spatial distribution on the effective behavior of composite materials and cracked media. Journal of the Mechanics and Physics of Solids, 43, 1919–1951.MathSciNetCrossRefMATH
Zurück zum Zitat Sacco, E. (2009). A nonlinear homogenization procedure for periodic masonry. European Journal of Mechanics A/Solids, 28, 2090–2222.CrossRef Sacco, E. (2009). A nonlinear homogenization procedure for periodic masonry. European Journal of Mechanics A/Solids, 28, 2090–2222.CrossRef
Zurück zum Zitat Schapery, R. A. (1997). Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mechanics of Time-Dependent Materials, 1, 209–240.CrossRef Schapery, R. A. (1997). Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mechanics of Time-Dependent Materials, 1, 209–240.CrossRef
Zurück zum Zitat Smith, G. E., & Spencer, A. J. M. (1970). A continuum theory of a plastic-rigid solid reinforced by two families of inextensible fibres. Quarterly Journal of Mechanics and Applied Mathematics, 23, 489–504.CrossRefMATH Smith, G. E., & Spencer, A. J. M. (1970). A continuum theory of a plastic-rigid solid reinforced by two families of inextensible fibres. Quarterly Journal of Mechanics and Applied Mathematics, 23, 489–504.CrossRefMATH
Zurück zum Zitat Spencer, A. J. M. (1972). Deformation of fibre-reinforced materials. London: Oxford University Press. Spencer, A. J. M. (1972). Deformation of fibre-reinforced materials. London: Oxford University Press.
Zurück zum Zitat Spencer, A. J. M. (1987). Kinematic constraints, constitutive equations and failure rules for anisotropic materials. In J. P. Boehler (Ed.), Chapter 10 of Applications of tensor functions in continuum mechanics, CISM Courses and Lectures (No. 292, pp. 187–201). Wien: Springer. Spencer, A. J. M. (1987). Kinematic constraints, constitutive equations and failure rules for anisotropic materials. In J. P. Boehler (Ed.), Chapter 10 of Applications of tensor functions in continuum mechanics, CISM Courses and Lectures (No. 292, pp. 187–201). Wien: Springer.
Zurück zum Zitat Spencer, A. J. M. (1992). Plasticity theory for fibre-reinforced composites. Journal of Engineering Mathematics, 26, 107–118.MathSciNetCrossRefMATH Spencer, A. J. M. (1992). Plasticity theory for fibre-reinforced composites. Journal of Engineering Mathematics, 26, 107–118.MathSciNetCrossRefMATH
Zurück zum Zitat Suquet, P. (1987). Elements of homogenization for inelastic solid mechanics. In E. Sanchez-Palencia & A. Zaoui (Eds.), Homogenization techniques for composite media. New York: Springer. Suquet, P. (1987). Elements of homogenization for inelastic solid mechanics. In E. Sanchez-Palencia & A. Zaoui (Eds.), Homogenization techniques for composite media. New York: Springer.
Zurück zum Zitat Suquet, P. (1997). Effective properties of nonlinear composites. In P. Suquet (Ed.), Continuum micromechanics (Vol. 337 of CISM Lecture Notes, pp. 197–264). New York: Springer. Suquet, P. (1997). Effective properties of nonlinear composites. In P. Suquet (Ed.), Continuum micromechanics (Vol. 337 of CISM Lecture Notes, pp. 197–264). New York: Springer.
Zurück zum Zitat Talbot, D. R. S., & Willis, J. R. (1985). Variational principles for inhomogeneous nonlinear media. Journal of Applied Mathematics, 35, 39–54.MathSciNetMATH Talbot, D. R. S., & Willis, J. R. (1985). Variational principles for inhomogeneous nonlinear media. Journal of Applied Mathematics, 35, 39–54.MathSciNetMATH
Zurück zum Zitat Talbot, D. R. S., & Willis, J. R. (1992). Some simple explicit bounds for the overall behaviour of nonlinear composites. International Journal of Solids and Structures, 29, 1981–1987.MathSciNetCrossRefMATH Talbot, D. R. S., & Willis, J. R. (1992). Some simple explicit bounds for the overall behaviour of nonlinear composites. International Journal of Solids and Structures, 29, 1981–1987.MathSciNetCrossRefMATH
Zurück zum Zitat Talbot, D. R. S., & Willis, J. R. (1997). Bounds of third order for the overall response of nonlinear composites. Journal of the Mechanics and Physics of Solids, 45, 87–111.MathSciNetCrossRefMATH Talbot, D. R. S., & Willis, J. R. (1997). Bounds of third order for the overall response of nonlinear composites. Journal of the Mechanics and Physics of Solids, 45, 87–111.MathSciNetCrossRefMATH
Zurück zum Zitat Teply, J. L., & Dvorak, G. J. (1987). Dual estimates of instantaneous properties of elastic-plastic composites. In A. J. M. Spencer (Ed.), Continuum models of discrete systems (pp. 205–2l6). Rotterdam: A. A. Balkema Press. Teply, J. L., & Dvorak, G. J. (1987). Dual estimates of instantaneous properties of elastic-plastic composites. In A. J. M. Spencer (Ed.), Continuum models of discrete systems (pp. 205–2l6). Rotterdam: A. A. Balkema Press.
Zurück zum Zitat Teply, J. L., & Dvorak, G. J. (1988). Bounds on overall instantaneous properties of elastic-plastic composites. Journal of the Mechanics and Physics of Solids, 36, 29–58.CrossRefMATH Teply, J. L., & Dvorak, G. J. (1988). Bounds on overall instantaneous properties of elastic-plastic composites. Journal of the Mechanics and Physics of Solids, 36, 29–58.CrossRefMATH
Zurück zum Zitat Teply, J. L., & Reddy, J. N. (1990). A unified formulation of micromechanics models of fiber-reinforced composites. In G. J. Dvorak (Ed.), Inelastic deformation of composite materials (pp. 341–372). New York: Springer. Teply, J. L., & Reddy, J. N. (1990). A unified formulation of micromechanics models of fiber-reinforced composites. In G. J. Dvorak (Ed.), Inelastic deformation of composite materials (pp. 341–372). New York: Springer.
Zurück zum Zitat Teply, J. L., Reddy, J. N., & Brockenbrough, J. R. (1992). A unified formulation of micromechanics models of fiber-reinforced composites. In J. N. Reddy & A. V. Krishna Murty (Eds.), Composite structures (pp. 294–325). New Delhi: Narosa Publication House.CrossRef Teply, J. L., Reddy, J. N., & Brockenbrough, J. R. (1992). A unified formulation of micromechanics models of fiber-reinforced composites. In J. N. Reddy & A. V. Krishna Murty (Eds.), Composite structures (pp. 294–325). New Delhi: Narosa Publication House.CrossRef
Zurück zum Zitat Walker, K. P., Jordan, E. H., & Freed, A. D. (1990). Equivalence of Green’s function and the Fourier series representation of composites with periodic structure. In G. J. Weng, M. Taya, & H. Abé (Eds.), Micromechanics and inhomogeneity, The T. Mura 65-th anniversary volume (pp. 535–558). New York: Springer.CrossRef Walker, K. P., Jordan, E. H., & Freed, A. D. (1990). Equivalence of Green’s function and the Fourier series representation of composites with periodic structure. In G. J. Weng, M. Taya, & H. Abé (Eds.), Micromechanics and inhomogeneity, The T. Mura 65-th anniversary volume (pp. 535–558). New York: Springer.CrossRef
Zurück zum Zitat Willis, J. R. (1991). On methods for bounding the overall properties of nonlinear composites. Journal of the Mechanics and Physics of Solids, 39, 73–86. Errata ibid. 40, (1992) 441–445. Willis, J. R. (1991). On methods for bounding the overall properties of nonlinear composites. Journal of the Mechanics and Physics of Solids, 39, 73–86. Errata ibid. 40, (1992) 441–445.
Zurück zum Zitat Green, A. E., & Atkins, J. E. (1960). Large elastic deformations and non-linear continuum mechanics. Oxford: Clarendon Press. Green, A. E., & Atkins, J. E. (1960). Large elastic deformations and non-linear continuum mechanics. Oxford: Clarendon Press.
Zurück zum Zitat Franciosi, P., & Berberinni, S. (2007). Heterogeneous crystal and poly-crystal plasticity modeling from a transformation field analysis with a regularized Schmid law. Journal of the Mechanics and Physics of Solids, 55, 2265–2299.MathSciNetCrossRefMATH Franciosi, P., & Berberinni, S. (2007). Heterogeneous crystal and poly-crystal plasticity modeling from a transformation field analysis with a regularized Schmid law. Journal of the Mechanics and Physics of Solids, 55, 2265–2299.MathSciNetCrossRefMATH
Zurück zum Zitat Michel, J. C., & Suquet, P.(2004). Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Computer Methods in Applied Mechanics and Engineering, 193, 5477–5502.MathSciNetCrossRefMATH Michel, J. C., & Suquet, P.(2004). Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Computer Methods in Applied Mechanics and Engineering, 193, 5477–5502.MathSciNetCrossRefMATH
Zurück zum Zitat Prochazka, P. (1997). Slope optimization using transformation field analysis. Engineering Analysis with Boundary Elements, 20, 179–184.CrossRef Prochazka, P. (1997). Slope optimization using transformation field analysis. Engineering Analysis with Boundary Elements, 20, 179–184.CrossRef
Zurück zum Zitat Wu, J. F., Shephard, M. S., Dvorak, G. J., & Bahei-El-Din, Y. A. (1989). A material Model for the finite element analysis of metal matrix composites. Composites Science and Technology, 35, 347–366.CrossRef Wu, J. F., Shephard, M. S., Dvorak, G. J., & Bahei-El-Din, Y. A. (1989). A material Model for the finite element analysis of metal matrix composites. Composites Science and Technology, 35, 347–366.CrossRef
Zurück zum Zitat Dvorak, G. J., & Benveniste, Y. (1997). On micromechanics of inelastic and piezoelectric composites. In T. Tatsumi, E. Watanabe, & T. Kambe (Eds), Theoretical and Applied Mechanics 1996 (pp. 217 – 237 ). Elsevier Science B.V. Dvorak, G. J., & Benveniste, Y. (1997). On micromechanics of inelastic and piezoelectric composites. In T. Tatsumi, E. Watanabe, & T. Kambe (Eds), Theoretical and Applied Mechanics 1996 (pp. 217 – 237 ). Elsevier Science B.V.
Zurück zum Zitat Dvorak, G. J (2001). Damage evolution and prevention in composite materials. In H. Aref & J. W. Phillips (Eds), Mechanics for the New Millenium Proceedings of ICTAM 2000, the 20th International Congress of Theoretical and Applied Mechanics (pp. 197–210). Kluver Academic Publishers. Dvorak, G. J (2001). Damage evolution and prevention in composite materials. In H. Aref & J. W. Phillips (Eds), Mechanics for the New Millenium Proceedings of ICTAM 2000, the 20th International Congress of Theoretical and Applied Mechanics (pp. 197–210). Kluver Academic Publishers.
Zurück zum Zitat Michel, J. C., Moulinec, H., & Suquet, P. (1999). Effective properties of composite materials with periodic microstructure:a computational approach. Computer Methods in Applied Mechanics and Engineering, 172, 109–143.MathSciNetCrossRefMATH Michel, J. C., Moulinec, H., & Suquet, P. (1999). Effective properties of composite materials with periodic microstructure:a computational approach. Computer Methods in Applied Mechanics and Engineering, 172, 109–143.MathSciNetCrossRefMATH
Zurück zum Zitat Dvorak, G. J., Rao, M.S.M., & Tarn, J. Q. (1973). Yielding in unidirectional composites under external loads and temperature changes. Journal of Composite Materials, 7, l94–216.CrossRef Dvorak, G. J., Rao, M.S.M., & Tarn, J. Q. (1973). Yielding in unidirectional composites under external loads and temperature changes. Journal of Composite Materials, 7, l94–216.CrossRef
Zurück zum Zitat Dvorak, G. J. (1997). Thermomechanics of heterogeneous media. Journal of Thermal Stresses, 20, 799–817.CrossRef Dvorak, G. J. (1997). Thermomechanics of heterogeneous media. Journal of Thermal Stresses, 20, 799–817.CrossRef
Zurück zum Zitat Dvorak, G. J., & Johnson, W. S. (1980). Fatigue of metal matrix composites. International Journal of Fracture, 16, 585–607.CrossRef Dvorak, G. J., & Johnson, W. S. (1980). Fatigue of metal matrix composites. International Journal of Fracture, 16, 585–607.CrossRef
Zurück zum Zitat Tarn, J. Q., Dvorak, G, J., & Rao, M.S.M. (1975). Shakedown of unidirectional composites, Intl. J. Solids Structures, 6, 75l–764. Tarn, J. Q., Dvorak, G, J., & Rao, M.S.M. (1975). Shakedown of unidirectional composites, Intl. J. Solids Structures, 6, 75l–764.
Zurück zum Zitat Dvorak, G. J., Lagoudas. D. C., & Huang, C-M. (2000). Shakedown and fatigue damage in metal matrix composites. In D. Weichert & G. Maier (Eds), Inelastic Analysis of Structures under Variable Repeated Loads (pp. 193 – 196). Kluver Academic Publishers. Dvorak, G. J., Lagoudas. D. C., & Huang, C-M. (2000). Shakedown and fatigue damage in metal matrix composites. In D. Weichert & G. Maier (Eds), Inelastic Analysis of Structures under Variable Repeated Loads (pp. 193 – 196). Kluver Academic Publishers.
Zurück zum Zitat Brinson, H. F., & Brinson, L. C. (2008). Polymer Engineering Science and Viscoelasticity: An Introduction. Springer Science, New York. Brinson, H. F., & Brinson, L. C. (2008). Polymer Engineering Science and Viscoelasticity: An Introduction. Springer Science, New York.
Zurück zum Zitat Krempl, E. (1985). Inelastic work and thermomechanical coupling in viscoplasticity. In A. Sawczuk and V. Bianchi (Eds), Plasticity Today: Modeling Methods and Applications. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands. Krempl, E. (1985). Inelastic work and thermomechanical coupling in viscoplasticity. In A. Sawczuk and V. Bianchi (Eds), Plasticity Today: Modeling Methods and Applications. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.
Zurück zum Zitat Dvorak, G, J., & Rao, M.S.M. (1976a). Axisymmetric plasticity theory of fibrous composites. International Journal of Engineering Science, 14, 36l–373.CrossRef Dvorak, G, J., & Rao, M.S.M. (1976a). Axisymmetric plasticity theory of fibrous composites. International Journal of Engineering Science, 14, 36l–373.CrossRef
Zurück zum Zitat Dvorak, G, J., & Rao, M.S.M. (1976b). Thermal stresses in heat-treated fibrous composites. ASME Journal of Applied Mechanics. 43, 6l9–624. Dvorak, G, J., & Rao, M.S.M. (1976b). Thermal stresses in heat-treated fibrous composites. ASME Journal of Applied Mechanics. 43, 6l9–624.
Zurück zum Zitat Maier, G. (1969) Shakedown theory in perfect elastoplasticity with associated and nonassociated flow laws: A finite element linear programing approach. Meccanica. 4, 250–260. Maier, G. (1969) Shakedown theory in perfect elastoplasticity with associated and nonassociated flow laws: A finite element linear programing approach. Meccanica. 4, 250–260.
Zurück zum Zitat Maier, G. (1973) A shakedown matrix theory allowing for workhardening and second order geometric effects. In Foundations of Plasticity, Vol. 1, Sawczuck A. (ed). Noordoff: Leyden, 417–433. Maier, G. (1973) A shakedown matrix theory allowing for workhardening and second order geometric effects. In Foundations of Plasticity, Vol. 1, Sawczuck A. (ed). Noordoff: Leyden, 417–433.
Metadaten
Titel
Inelastic Composite Materials
verfasst von
George J. Dvorak
Copyright-Jahr
2013
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-4101-0_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.