Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 7-8/2020

05.01.2020 | ORIGINAL ARTICLE

Heat source model calibration for thermal analysis of laser powder-bed fusion

verfasst von: Shahriar Imani Shahabad, Zhidong Zhang, Ali Keshavarzkermani, Usman Ali, Yahya Mahmoodkhani, Reza Esmaeilizadeh, Ali Bonakdar, Ehsan Toyserkani

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 7-8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Laser powder-bed fusion (LPBF) is one of the mainstream additive manufacturing (AM) processes, which has dominated the metal AM manufacturing market. LPBF has the capability to manufacture complex parts, which pose a manufacturing challenge by conventional methods. In this paper, an efficient numerical-experimental approach has been introduced to calibrate the parameters of a proposed three-dimensional (3D) conical Gaussian moving laser heat source model. For this purpose, several Hastelloy X single tracks are printed with various process parameters. The melt pool depth and width were measured experimentally, and results were used to calibrate and validate the heat source model. An empirical relationship between heat source parameters and laser energy density was also proposed. In addition, temperature gradients and cooling rates around the melt pool were extracted from the numerical model to be used towards microstructure prediction. Estimated microstructure cell spacing, calculated based on predicted cooling rate during solidification, was in good agreement with experimental measurements, indicating the validity of the heat source model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Stavropoulos P, Foteinopoulos P (2018) Modelling of additive manufacturing processes: a review and classi fi cation. Manuf Rev 2 Stavropoulos P, Foteinopoulos P (2018) Modelling of additive manufacturing processes: a review and classi fi cation. Manuf Rev 2
2.
Zurück zum Zitat Fayazfar H et al (2018) A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties. Mater Des 144:98–128CrossRef Fayazfar H et al (2018) A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties. Mater Des 144:98–128CrossRef
3.
Zurück zum Zitat Chiumenti M et al (2017) Numerical modelling and experimental validation in selective laser melting. Addit Manuf 18:171–185CrossRef Chiumenti M et al (2017) Numerical modelling and experimental validation in selective laser melting. Addit Manuf 18:171–185CrossRef
4.
Zurück zum Zitat Luo C, Qiu J, Yan Y, Yang J, Uher C, Tang X (2018) Finite element analysis of temperature and stress fields during the selective laser melting process of thermoelectric SnTe. J Mater Process Technol 261(June):74–85CrossRef Luo C, Qiu J, Yan Y, Yang J, Uher C, Tang X (2018) Finite element analysis of temperature and stress fields during the selective laser melting process of thermoelectric SnTe. J Mater Process Technol 261(June):74–85CrossRef
5.
Zurück zum Zitat Peng H et al (2018) Fast prediction of thermal distortion in metal powder bed fusion additive manufacturing: part 2, a quasi-static thermo-mechanical model. Addit Manuf 22(2010):869–882CrossRef Peng H et al (2018) Fast prediction of thermal distortion in metal powder bed fusion additive manufacturing: part 2, a quasi-static thermo-mechanical model. Addit Manuf 22(2010):869–882CrossRef
6.
Zurück zum Zitat Kundakc E et al (2018) Thermal and molten pool model in selective laser melting process of Inconel 625. Int J Adv Manuf Technol Kundakc E et al (2018) Thermal and molten pool model in selective laser melting process of Inconel 625. Int J Adv Manuf Technol
7.
Zurück zum Zitat Liu S, Zhu H, Peng G, Yin J, Zeng X (2018) Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater Des 142:319–328CrossRef Liu S, Zhu H, Peng G, Yin J, Zeng X (2018) Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater Des 142:319–328CrossRef
8.
Zurück zum Zitat Antony K, Arivazhagan N, Senthilkumaran K (2014) Numerical and experimental investigations on laser melting of stainless steel 316L metal powders. J Manuf Process 16(3):345–355CrossRef Antony K, Arivazhagan N, Senthilkumaran K (2014) Numerical and experimental investigations on laser melting of stainless steel 316L metal powders. J Manuf Process 16(3):345–355CrossRef
9.
Zurück zum Zitat H. Ali, H. Ghadbeigi, and K. Mumtaz, “Residual stress development in selective laser-melted Ti6Al4V: a parametric thermal modelling approach” 2018 H. Ali, H. Ghadbeigi, and K. Mumtaz, “Residual stress development in selective laser-melted Ti6Al4V: a parametric thermal modelling approach” 2018
10.
Zurück zum Zitat Du Y, You X, Qiao F, Guo L, Liu Z (2019) A model for predicting the temperature field during selective laser melting. Results Phys 12(November 2018):52–60CrossRef Du Y, You X, Qiao F, Guo L, Liu Z (2019) A model for predicting the temperature field during selective laser melting. Results Phys 12(November 2018):52–60CrossRef
11.
Zurück zum Zitat Zhang Z et al (2019) 3-dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt Laser Technol 109:297–312CrossRef Zhang Z et al (2019) 3-dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt Laser Technol 109:297–312CrossRef
12.
Zurück zum Zitat Wu CS, Wang HG, Zhang YM (2006) A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile. Weld J 85(12):284 Wu CS, Wang HG, Zhang YM (2006) A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile. Weld J 85(12):284
13.
Zurück zum Zitat Bonakdar A, Molavi-Zarandi M, Chamanfar A, Jahazi M, Firoozrai A, Morin E (2017) Finite element modeling of the electron beam welding of Inconel-713LC gas turbine blades. J Manuf Process 26:339–354CrossRef Bonakdar A, Molavi-Zarandi M, Chamanfar A, Jahazi M, Firoozrai A, Morin E (2017) Finite element modeling of the electron beam welding of Inconel-713LC gas turbine blades. J Manuf Process 26:339–354CrossRef
14.
Zurück zum Zitat EOS GmbH - Electro Optical Systems (2015) Material data sheet EOS NickelAlloy HX Material data sheet Technical data EOS GmbH - Electro Optical Systems (2015) Material data sheet EOS NickelAlloy HX Material data sheet Technical data
15.
Zurück zum Zitat Esmaeilizadeh R, Ali U, Keshavarzkermani A, Mahmoodkhani Y, Marzbanrad E, Toyserkani E (2019) On the effect of spatter particles distribution on the quality of Hastelloy X parts made by laser powder-bed fusion additive manufacturing. J Manuf Process 37(November 2018):11–20CrossRef Esmaeilizadeh R, Ali U, Keshavarzkermani A, Mahmoodkhani Y, Marzbanrad E, Toyserkani E (2019) On the effect of spatter particles distribution on the quality of Hastelloy X parts made by laser powder-bed fusion additive manufacturing. J Manuf Process 37(November 2018):11–20CrossRef
16.
Zurück zum Zitat Ali U et al (2018) On the measurement of relative powder-bed compaction density in powder-bed additive manufacturing processes. J Mater Des Ali U et al (2018) On the measurement of relative powder-bed compaction density in powder-bed additive manufacturing processes. J Mater Des
17.
Zurück zum Zitat Sih SS, Barlow JW (2004) The prediction of the emissivity and thermal conductivity of powder beds. Part Sci Technol 22(4):427–440CrossRef Sih SS, Barlow JW (2004) The prediction of the emissivity and thermal conductivity of powder beds. Part Sci Technol 22(4):427–440CrossRef
18.
Zurück zum Zitat Promoppatum P, Yao S, Pistorius PC, Rollett AD (2017) A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion. Engineering 3(5):685–694CrossRef Promoppatum P, Yao S, Pistorius PC, Rollett AD (2017) A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion. Engineering 3(5):685–694CrossRef
19.
Zurück zum Zitat Huang W, Zhang Y (2019) Finite element simulation of thermal behavior in single-track multiple-layers thin wall without-support during selective laser melting. J Manuf Process 42(April):139–148CrossRef Huang W, Zhang Y (2019) Finite element simulation of thermal behavior in single-track multiple-layers thin wall without-support during selective laser melting. J Manuf Process 42(April):139–148CrossRef
20.
Zurück zum Zitat Luo C, Qiu J, Yan Y, Yang J, Uher C, Tang X (2018) Finite element analysis of temperature and stress fields during the selective laser melting process of thermoelectric SnTe. J Mater Process Technol 261(February):74–85CrossRef Luo C, Qiu J, Yan Y, Yang J, Uher C, Tang X (2018) Finite element analysis of temperature and stress fields during the selective laser melting process of thermoelectric SnTe. J Mater Process Technol 261(February):74–85CrossRef
21.
Zurück zum Zitat Gouge M, Michaleris P (2017) Thermo-mechanical modeling of additive manufacturing, 1st edn. Elsevier Inc. Gouge M, Michaleris P (2017) Thermo-mechanical modeling of additive manufacturing, 1st edn. Elsevier Inc.
22.
Zurück zum Zitat Kreith F, Manglik RM, Bohn MS (2012) Principles of heat transfer. Cengage Learning Kreith F, Manglik RM, Bohn MS (2012) Principles of heat transfer. Cengage Learning
23.
Zurück zum Zitat King WE et al (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 214(12):2915–2925CrossRef King WE et al (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 214(12):2915–2925CrossRef
24.
Zurück zum Zitat Trapp J, Rubenchik AM, Guss G, Matthews MJ (2017) In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today 9:341–349CrossRef Trapp J, Rubenchik AM, Guss G, Matthews MJ (2017) In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today 9:341–349CrossRef
25.
Zurück zum Zitat Keshavarzkermani A et al (2019) An investigation into the effect of process parameters on melt pool geometry, cell spacing, and grain refinement during laser powder bed fusion. Opt Laser Technol 116(January):83–91CrossRef Keshavarzkermani A et al (2019) An investigation into the effect of process parameters on melt pool geometry, cell spacing, and grain refinement during laser powder bed fusion. Opt Laser Technol 116(January):83–91CrossRef
26.
Zurück zum Zitat Acharya R, Sharon JA, Staroselsky A (2017) Prediction of microstructure in laser powder bed fusion process. Acta Mater 124:360–371CrossRef Acharya R, Sharon JA, Staroselsky A (2017) Prediction of microstructure in laser powder bed fusion process. Acta Mater 124:360–371CrossRef
27.
Zurück zum Zitat Darvish K, Chen ZW, Phan MAL, Pasang T (2018) Materials characterization selective laser melting of Co-29Cr-6Mo alloy with laser power 180–360 W: cellular growth , intercellular spacing and the related thermal condition. Mater Charact 135(November 2017):183–191CrossRef Darvish K, Chen ZW, Phan MAL, Pasang T (2018) Materials characterization selective laser melting of Co-29Cr-6Mo alloy with laser power 180–360 W: cellular growth , intercellular spacing and the related thermal condition. Mater Charact 135(November 2017):183–191CrossRef
28.
Zurück zum Zitat Kurz W, Trivedi R (1994) Rapid solidification processing and microstructure formation. 17:46–51CrossRef Kurz W, Trivedi R (1994) Rapid solidification processing and microstructure formation. 17:46–51CrossRef
30.
Zurück zum Zitat Harrison NJ, Todd I, Mumtaz K (2015) Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach. Acta Mater 94:59–68CrossRef Harrison NJ, Todd I, Mumtaz K (2015) Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach. Acta Mater 94:59–68CrossRef
Metadaten
Titel
Heat source model calibration for thermal analysis of laser powder-bed fusion
verfasst von
Shahriar Imani Shahabad
Zhidong Zhang
Ali Keshavarzkermani
Usman Ali
Yahya Mahmoodkhani
Reza Esmaeilizadeh
Ali Bonakdar
Ehsan Toyserkani
Publikationsdatum
05.01.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 7-8/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04908-3

Weitere Artikel der Ausgabe 7-8/2020

The International Journal of Advanced Manufacturing Technology 7-8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.