Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2020

24.09.2020 | ORIGINAL ARTICLE

Wire and arc additive manufacturing of metal components: a review of recent research developments

verfasst von: Jienan Liu, Yanling Xu, Yu Ge, Zhen Hou, Shanben Chen

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wire arc additive manufacturing (WAAM) is an important metal 3D printing method, which has many advantages, such as rapid deposition rate, low cost, and suitability for large complex metal components manufacturing, and it has received extensive attention. This paper summarizes the research developments of WAAM in recent years, including the WAAM-suitable metal materials and processing technology, deposition strategy optimization including slicing and path planning algorithm, multi-sensor monitoring and intelligent control, and the large complex metal components manufacturing technology. The promising development directions of WAAM are prospected, including the research of new materials and new technology, composite manufacturing, multi-sensor and real-time monitoring, algorithmic optimization of metal filling strategy, and the application of artificial intelligence technology in WAAM, etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites Part B: Engineering 143:172–196 Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites Part B: Engineering 143:172–196
2.
Zurück zum Zitat Duda T, Raghavan LV (2016) 3D metal printing technology. IFAC-PapersOnLine 49(29):103–110 Duda T, Raghavan LV (2016) 3D metal printing technology. IFAC-PapersOnLine 49(29):103–110
3.
Zurück zum Zitat ASTM Committee F42 on Additive Manufacturing Technologies (2009) Standard terminology for additive manufacturi—general principles and terminology. ISO/ASTM52900-15 ASTM Committee F42 on Additive Manufacturing Technologies (2009) Standard terminology for additive manufacturi—general principles and terminology. ISO/ASTM52900-15
4.
Zurück zum Zitat Williams SW, Martina F, Addison AC (2016) Wire+arc additive manufacturing. Mater Sci Tech-Lond 32(7):641–647 Williams SW, Martina F, Addison AC (2016) Wire+arc additive manufacturing. Mater Sci Tech-Lond 32(7):641–647
5.
Zurück zum Zitat Pauly S, Schricker C, Scudino S, Deng L, Kühn U (2017) Processing a glass-forming Zr-based alloy by selective laser melting. Materials & Design 135:133–141 Pauly S, Schricker C, Scudino S, Deng L, Kühn U (2017) Processing a glass-forming Zr-based alloy by selective laser melting. Materials & Design 135:133–141
6.
Zurück zum Zitat Deng L, Wang S, Wang P, Kühn U, Pauly S (2018) Selective laser melting of a Ti-based bulk metallic glass. Materials Letters 212:346–349 Deng L, Wang S, Wang P, Kühn U, Pauly S (2018) Selective laser melting of a Ti-based bulk metallic glass. Materials Letters 212:346–349
7.
Zurück zum Zitat Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design 69:65–89 Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design 69:65–89
8.
Zurück zum Zitat Wong KV, Hernandez A (2012) A review of additive manufacturing. International scholarly research notices, 2012 Wong KV, Hernandez A (2012) A review of additive manufacturing. International scholarly research notices, 2012
9.
Zurück zum Zitat Wang ZY, Shen YF, Gu DD (2011) Development of porous 316L stainless steel with novel structures by selective laser melting. Powder Metall 54(3):225–230 Wang ZY, Shen YF, Gu DD (2011) Development of porous 316L stainless steel with novel structures by selective laser melting. Powder Metall 54(3):225–230
10.
Zurück zum Zitat Ding D, Pan Z, Cuiuri D, Li H (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Tech 81(1-4):465–481 Ding D, Pan Z, Cuiuri D, Li H (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Tech 81(1-4):465–481
11.
Zurück zum Zitat Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164 Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164
12.
Zurück zum Zitat Pan Z, Ding D, Wu B, Cuiuri D, Li H, Norrish J (2018) Arc welding processes for additive manufacturing: a review. Transac on Intell Weld Manuf:3–24 Pan Z, Ding D, Wu B, Cuiuri D, Li H, Norrish J (2018) Arc welding processes for additive manufacturing: a review. Transac on Intell Weld Manuf:3–24
13.
Zurück zum Zitat Priarone PC, Campatelli G, Montevecchi F, Venturini G, Settineri L (2019) A modelling framework for comparing the environmental and economic performance of WAAM-based integrated manufacturing and machining. CIRP Annals 68(1):37–40 Priarone PC, Campatelli G, Montevecchi F, Venturini G, Settineri L (2019) A modelling framework for comparing the environmental and economic performance of WAAM-based integrated manufacturing and machining. CIRP Annals 68(1):37–40
15.
Zurück zum Zitat Ding D, Shen C, Pan Z, Cuiuri D, Li H, Larkin N, van Duin S (2016) Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part. Comput Aid D 73:66–75 Ding D, Shen C, Pan Z, Cuiuri D, Li H, Larkin N, van Duin S (2016) Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part. Comput Aid D 73:66–75
16.
Zurück zum Zitat Mehnen J, Ding J, Lockett H, Kazanas P (2011). Design for wire and arc additive layer manufacture. In Global Product Development (pp. 721-727). Glo Product Develop 721-727 Mehnen J, Ding J, Lockett H, Kazanas P (2011). Design for wire and arc additive layer manufacture. In Global Product Development (pp. 721-727). Glo Product Develop 721-727
17.
Zurück zum Zitat Kapustka N, Harris ID (2014) Exploring arc welding for additive manufacturing of titanium parts. Weld J 93(3):32–35 Kapustka N, Harris ID (2014) Exploring arc welding for additive manufacturing of titanium parts. Weld J 93(3):32–35
18.
Zurück zum Zitat Shen C, Pan Z, Cuiuri D (2016) Fabrication of Fe-FeAl functionally graded material using the wire-arc additive manufacturing process. Metall Mater Trans B 47(1):763–772 Shen C, Pan Z, Cuiuri D (2016) Fabrication of Fe-FeAl functionally graded material using the wire-arc additive manufacturing process. Metall Mater Trans B 47(1):763–772
19.
Zurück zum Zitat Wang F, Williams S, Colegrove P, Antonysamy AA (2013) Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V. Metall Mater Trans A 44(2):968–977 Wang F, Williams S, Colegrove P, Antonysamy AA (2013) Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V. Metall Mater Trans A 44(2):968–977
20.
Zurück zum Zitat Gou J, Shen J, Hu S, Tian Y, Liang Y (2019) Microstructure and mechanical properties of as-built and heat-treated Ti-6Al-4V alloy prepared by cold metal transfer additive manufacturing. J Manuf Process 42:41–50 Gou J, Shen J, Hu S, Tian Y, Liang Y (2019) Microstructure and mechanical properties of as-built and heat-treated Ti-6Al-4V alloy prepared by cold metal transfer additive manufacturing. J Manuf Process 42:41–50
21.
Zurück zum Zitat Dutta B, Froes FH (2015) The additive manufacturing (AM) of titanium alloys. Tipowder metall: 447-468 Dutta B, Froes FH (2015) The additive manufacturing (AM) of titanium alloys. Tipowder metall: 447-468
22.
Zurück zum Zitat Guo J, Zhou Y, Liu C (2016) Wire arc additive manufacturing of AZ31 magnesium alloy: grain refinement by adjusting pulse frequency. Materi 9(10):823 Guo J, Zhou Y, Liu C (2016) Wire arc additive manufacturing of AZ31 magnesium alloy: grain refinement by adjusting pulse frequency. Materi 9(10):823
23.
Zurück zum Zitat Qi Z, Cong B, Qi B, Sun H, Zhao G, Ding J (2018) Microstructure and mechanical properties of double-wire+ arc additively manufactured Al-Cu-Mg alloys. J Materi Process Tech 255:347–353 Qi Z, Cong B, Qi B, Sun H, Zhao G, Ding J (2018) Microstructure and mechanical properties of double-wire+ arc additively manufactured Al-Cu-Mg alloys. J Materi Process Tech 255:347–353
24.
Zurück zum Zitat Shen, C., Pan, Z., Ding, D., Yuan, L., Nie, N., Wang, Y., ... & Li, H (2018) The influence of post-production heat treatment on the multi-directional properties of nickel-aluminum bronze alloy fabricated using wire-arc additive manufacturing process. 3D Print Addit Manuf 23: 411-421. Shen, C., Pan, Z., Ding, D., Yuan, L., Nie, N., Wang, Y., ... & Li, H (2018) The influence of post-production heat treatment on the multi-directional properties of nickel-aluminum bronze alloy fabricated using wire-arc additive manufacturing process. 3D Print Addit Manuf 23: 411-421.
25.
Zurück zum Zitat Zhao W, Liu L (2006) Structural characterization of Ni-based superalloy manufactured by plasma transferred arc-assisted deposition. Surface & Coatings Technology 201(3-4):1783–1787 Zhao W, Liu L (2006) Structural characterization of Ni-based superalloy manufactured by plasma transferred arc-assisted deposition. Surface & Coatings Technology 201(3-4):1783–1787
26.
Zurück zum Zitat Chou R, Milligan J, Paliwal M, Brochu M (2015) Additive manufacturing of Al-12Si alloy via pulsed selective laser melting. Jom 67(3):590–596 Chou R, Milligan J, Paliwal M, Brochu M (2015) Additive manufacturing of Al-12Si alloy via pulsed selective laser melting. Jom 67(3):590–596
27.
Zurück zum Zitat Champagne V, Jacob A, Dindl F (2019) Cold spray and WAAM methods for manufacturing gun barrels: U.S. Patent Application 10/281,227. Champagne V, Jacob A, Dindl F (2019) Cold spray and WAAM methods for manufacturing gun barrels: U.S. Patent Application 10/281,227.
28.
Zurück zum Zitat Holguin DA, Han S, Kim NP (2018) Magnesium alloy 3D printing by wire and arc additive manufacturing (WAAM). MRS Adv 3(49):2959–2964 Holguin DA, Han S, Kim NP (2018) Magnesium alloy 3D printing by wire and arc additive manufacturing (WAAM). MRS Adv 3(49):2959–2964
29.
Zurück zum Zitat Müller J, Grabowski M, Müller C, Hensel J, Unglaub J, Thiele K, Dilger K (2019) Design and parameter identification of wire and arc additively manufactured (WAAM) steel bars for use in construction. Metals 9(7):725 Müller J, Grabowski M, Müller C, Hensel J, Unglaub J, Thiele K, Dilger K (2019) Design and parameter identification of wire and arc additively manufactured (WAAM) steel bars for use in construction. Metals 9(7):725
30.
Zurück zum Zitat Yangfan W, Xizhang C, Chuanchu S (2019) Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surface & Coatings Technology 374:116–123 Yangfan W, Xizhang C, Chuanchu S (2019) Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surface & Coatings Technology 374:116–123
31.
Zurück zum Zitat Lévesque J, Dube D, Fiset M (2003) Investigation of corrosion behaviour of magnesium alloy AM60B-F under pseudo-physiological conditions. Mater Sci Forum 426:521–526 Lévesque J, Dube D, Fiset M (2003) Investigation of corrosion behaviour of magnesium alloy AM60B-F under pseudo-physiological conditions. Mater Sci Forum 426:521–526
32.
Zurück zum Zitat Pargman DS, Eriksson E, Bates O (2019) The future of computing and wisdom: insights from human–computer interaction. Futures 113:102434 Pargman DS, Eriksson E, Bates O (2019) The future of computing and wisdom: insights from human–computer interaction. Futures 113:102434
33.
Zurück zum Zitat Han S, Zielewski M, Martinez Holguin D, Michel Parra M, Kim N (2018) Optimization of AZ91D process and corrosion resistance using wire arc additive manufacturing. Appl. Sci. 8(8):1306 Han S, Zielewski M, Martinez Holguin D, Michel Parra M, Kim N (2018) Optimization of AZ91D process and corrosion resistance using wire arc additive manufacturing. Appl. Sci. 8(8):1306
34.
Zurück zum Zitat Hejripour F, Binesh F, Hebel M (2019) Thermal modeling and characterization of wirearc additive manufactured duplex stainless steel. J Materi Process Tech 272:58–71 Hejripour F, Binesh F, Hebel M (2019) Thermal modeling and characterization of wirearc additive manufactured duplex stainless steel. J Materi Process Tech 272:58–71
35.
Zurück zum Zitat Eriksson M, Lervåg M, Sørensen C (2018) Additive manufacture of superduplex stainless steel using WAAM. MATEC Web of Conferences. EDP Sciences 188: 03014 Eriksson M, Lervåg M, Sørensen C (2018) Additive manufacture of superduplex stainless steel using WAAM. MATEC Web of Conferences. EDP Sciences 188: 03014
36.
Zurück zum Zitat Rodriguez N, Vázquez L, Huarte I, Arruti E, Tabernero I, Alvarez P (2018) Wire and arc additive manufacturing: a comparison between CMT and TopTIG processes applied to stainless steel. Weld World 62(5):1083–1096 Rodriguez N, Vázquez L, Huarte I, Arruti E, Tabernero I, Alvarez P (2018) Wire and arc additive manufacturing: a comparison between CMT and TopTIG processes applied to stainless steel. Weld World 62(5):1083–1096
37.
Zurück zum Zitat Theriault A, Xue L, Dryden JR (2009) Fatigue behavior of laser consolidated IN-625 at room and elevated temperatures. Mater. Sci. Eng. A 516(1-2):217–225 Theriault A, Xue L, Dryden JR (2009) Fatigue behavior of laser consolidated IN-625 at room and elevated temperatures. Mater. Sci. Eng. A 516(1-2):217–225
38.
Zurück zum Zitat Xu X, Ding J, Ganguly S, Williams S (2019) Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire+ arc additive manufacture process. J Mater Process Tech 265:201–209 Xu X, Ding J, Ganguly S, Williams S (2019) Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire+ arc additive manufacture process. J Mater Process Tech 265:201–209
39.
Zurück zum Zitat Baicheng Z, Xiaohua L, Jiaming B, Junfeng G, Pan W, Chen-nan S, Jun W (2017) Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Mater & D116:531–537 Baicheng Z, Xiaohua L, Jiaming B, Junfeng G, Pan W, Chen-nan S, Jun W (2017) Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Mater & D116:531–537
40.
Zurück zum Zitat Pardo A, Merino MC, Coy AE, Viejo F, Arrabal R, Feliú S Jr (2008) Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media. Electrochim. Acta 53(27):7890–7902 Pardo A, Merino MC, Coy AE, Viejo F, Arrabal R, Feliú S Jr (2008) Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media. Electrochim. Acta 53(27):7890–7902
41.
Zurück zum Zitat Horgar A, Fostervoll H, Nyhus B (2018) Additive manufacturing using WAAM with AA5183 wire. J Mater Process Tech 259:68–74 Horgar A, Fostervoll H, Nyhus B (2018) Additive manufacturing using WAAM with AA5183 wire. J Mater Process Tech 259:68–74
42.
Zurück zum Zitat Wang L, Suo Y, Liang Z, Wang D, Wang Q (2019) Effect of titanium powder on microstructure and mechanical properties of wire+ arc additively manufactured Al-Mg alloy. Mater. Lett. 241:231–234 Wang L, Suo Y, Liang Z, Wang D, Wang Q (2019) Effect of titanium powder on microstructure and mechanical properties of wire+ arc additively manufactured Al-Mg alloy. Mater. Lett. 241:231–234
43.
Zurück zum Zitat Sun L, Jiang F, Yuan D, Sun X, Su Y, Guo C (2019). Effects of ultrasonic micro-forging on 304 stainless steel fabricated by WAAM. TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. Springer, Cham 251-258 Sun L, Jiang F, Yuan D, Sun X, Su Y, Guo C (2019). Effects of ultrasonic micro-forging on 304 stainless steel fabricated by WAAM. TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. Springer, Cham 251-258
44.
Zurück zum Zitat Näsström J, Brückner F, Kaplan AF (2019) Measuring the effects of a laser beam on melt pool fluctuation in arc additive manufacturing. Rapid Prototyping J 25(3):488–495 Näsström J, Brückner F, Kaplan AF (2019) Measuring the effects of a laser beam on melt pool fluctuation in arc additive manufacturing. Rapid Prototyping J 25(3):488–495
45.
Zurück zum Zitat Woo W, Kim DK, Kingston EJ (2019) Effect of interlayers and scanning strategies on through-thickness residual stress distributions in additive manufactured ferritic-austenitic steel structure. Mater. Sci. Eng. A 744:618–629 Woo W, Kim DK, Kingston EJ (2019) Effect of interlayers and scanning strategies on through-thickness residual stress distributions in additive manufactured ferritic-austenitic steel structure. Mater. Sci. Eng. A 744:618–629
46.
Zurück zum Zitat Marinelli G, Martina F, Ganguly S, Williams S (2019) Development of wire+ arc additive manufacture for the production of large-scale unalloyed tungsten components. Int J Refract Met H 82:329–335 Marinelli G, Martina F, Ganguly S, Williams S (2019) Development of wire+ arc additive manufacture for the production of large-scale unalloyed tungsten components. Int J Refract Met H 82:329–335
47.
Zurück zum Zitat Li F, Chen S, Shi J, Zhao Y, Tian H (2018) Thermoelectric cooling-aided bead geometry regulation in wire and arc-based additive manufacturing of thin-walled structures. Appl Sci 8(2):207 Li F, Chen S, Shi J, Zhao Y, Tian H (2018) Thermoelectric cooling-aided bead geometry regulation in wire and arc-based additive manufacturing of thin-walled structures. Appl Sci 8(2):207
48.
Zurück zum Zitat Jung GH, Tsai CL (2014) Fundamental studies on the effect of distortion control plans on angular distortion in fillet welded T-joints. Weld J 83(7):213MathSciNet Jung GH, Tsai CL (2014) Fundamental studies on the effect of distortion control plans on angular distortion in fillet welded T-joints. Weld J 83(7):213MathSciNet
49.
Zurück zum Zitat Jurić I, Garašić I, Bušić M, Kožuh Z (2019) Influence of shielding gas composition on structure and mechanical properties of wire and arc additive manufactured Inconel 625. JOM 71(2):703–708 Jurić I, Garašić I, Bušić M, Kožuh Z (2019) Influence of shielding gas composition on structure and mechanical properties of wire and arc additive manufactured Inconel 625. JOM 71(2):703–708
50.
Zurück zum Zitat Caballero A, Ding J, Ganguly S, Williams S (2019) Wire+ arc additive manufacture of 17-4 PH stainless steel: effect of different processing conditions on microstructure, hardness, and tensile strength. J Mater Process Tech 268:54–62 Caballero A, Ding J, Ganguly S, Williams S (2019) Wire+ arc additive manufacture of 17-4 PH stainless steel: effect of different processing conditions on microstructure, hardness, and tensile strength. J Mater Process Tech 268:54–62
51.
Zurück zum Zitat Altenkirch J, Steuwer A, Peel M, Richards DG, Withers PJ (2008) The effect of tensioning and sectioning on residual stresses in aluminium AA7749 friction stir welds. Mater Sci & Eng A 488(1-2):16–24 Altenkirch J, Steuwer A, Peel M, Richards DG, Withers PJ (2008) The effect of tensioning and sectioning on residual stresses in aluminium AA7749 friction stir welds. Mater Sci & Eng A 488(1-2):16–24
52.
Zurück zum Zitat Altenkirch J, Steuwer A, Withers, Williams SW, Poad M, Wen SW (2009) Residual stress engineering in friction stir welds by roller tensioning. Sci Technol Weld Joi 14:185–192 Altenkirch J, Steuwer A, Withers, Williams SW, Poad M, Wen SW (2009) Residual stress engineering in friction stir welds by roller tensioning. Sci Technol Weld Joi 14:185–192
53.
Zurück zum Zitat Wang X, Wang A (2017). Finite element analysis of clamping form in wire and arc additive manufacturing. ICMSAO 1-5 Wang X, Wang A (2017). Finite element analysis of clamping form in wire and arc additive manufacturing. ICMSAO 1-5
54.
Zurück zum Zitat Montevecchi F, Venturini G, Grossi N (2018) Heat accumulation prevention in wire-arc-additive-manufacturing using air jet impingement. Mater. Lett. 17:14–18 Montevecchi F, Venturini G, Grossi N (2018) Heat accumulation prevention in wire-arc-additive-manufacturing using air jet impingement. Mater. Lett. 17:14–18
55.
Zurück zum Zitat Qi Z, Qi B, Cong B, Sun H, Zhao G, Ding J (2019) Microstructure and mechanical properties of wire+ arc additively manufactured 2024 aluminum alloy components: as-deposited and post heat-treated. J Manuf Process 40:27–36 Qi Z, Qi B, Cong B, Sun H, Zhao G, Ding J (2019) Microstructure and mechanical properties of wire+ arc additively manufactured 2024 aluminum alloy components: as-deposited and post heat-treated. J Manuf Process 40:27–36
56.
Zurück zum Zitat Duarte VR, Rodrigues TA, Schell N, Miranda RM, Oliveira JP, Santos TG (2020) Hot forging wire and arc additive manufacturing (HF-WAAM). Addit Manuf 101193 Duarte VR, Rodrigues TA, Schell N, Miranda RM, Oliveira JP, Santos TG (2020) Hot forging wire and arc additive manufacturing (HF-WAAM). Addit Manuf 101193
57.
Zurück zum Zitat Bambach M, Sizova I, Sydow B, Hemes S, Meiners F (2020). Hybrid Manufacturing of components from Ti-6Al-4V by metal forming and wire-arc additive manufacturing. J Materi Process Tech 116689 Bambach M, Sizova I, Sydow B, Hemes S, Meiners F (2020). Hybrid Manufacturing of components from Ti-6Al-4V by metal forming and wire-arc additive manufacturing. J Materi Process Tech 116689
58.
Zurück zum Zitat Ding J (2012) Thermo-mechanical analysis of wire and arc additive manufacturing process. 40: 27-36 Ding J (2012) Thermo-mechanical analysis of wire and arc additive manufacturing process. 40: 27-36
59.
Zurück zum Zitat Zhao H, Zhang G, Yin Z, Wu L (2011) A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping. J Materi Process Tech 211(3):488–495 Zhao H, Zhang G, Yin Z, Wu L (2011) A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping. J Materi Process Tech 211(3):488–495
60.
Zurück zum Zitat Montevecchi F, Venturini G, Grossi N, Scippa A, Campatelli G (2018) Idle time selection for wire-arc additive manufacturing: a finite element-based technique. Addit Manuf 21:479–486 Montevecchi F, Venturini G, Grossi N, Scippa A, Campatelli G (2018) Idle time selection for wire-arc additive manufacturing: a finite element-based technique. Addit Manuf 21:479–486
61.
Zurück zum Zitat Zhao Y, Li F, Chen S (2019) Unit block–based process planning strategy of WAAM for complex shell–shaped component. Int J Adv Manuf Tech: 1-13 Zhao Y, Li F, Chen S (2019) Unit block–based process planning strategy of WAAM for complex shell–shaped component. Int J Adv Manuf Tech: 1-13
62.
Zurück zum Zitat Xiong Y, Park SI, Padmanathan S (2019) Process planning for adaptive contour parallel toolpath in additive manufacturing with variable bead width. Int J Adv Manuf Tech: 1-12 Xiong Y, Park SI, Padmanathan S (2019) Process planning for adaptive contour parallel toolpath in additive manufacturing with variable bead width. Int J Adv Manuf Tech: 1-12
63.
Zurück zum Zitat Ding DH, Pan ZX, Dominic C (2014) Process planning strategy for wire and arc additive manufacturing. RWIA 2014:437–450 Ding DH, Pan ZX, Dominic C (2014) Process planning strategy for wire and arc additive manufacturing. RWIA 2014:437–450
64.
Zurück zum Zitat Ding D, Pan Z, Cuiuri D (2016) Automatic multi-direction slicing algorithms for wire based additive manufacturing. Robot CIM-INT Manuf 37:139–150 Ding D, Pan Z, Cuiuri D (2016) Automatic multi-direction slicing algorithms for wire based additive manufacturing. Robot CIM-INT Manuf 37:139–150
65.
Zurück zum Zitat Sabourin E, Houser SA (1996) Helge Bøhn J. Adaptive slicing using stepwise uniform refinement. Rapid Prototyping J 2(4):20–26 Sabourin E, Houser SA (1996) Helge Bøhn J. Adaptive slicing using stepwise uniform refinement. Rapid Prototyping J 2(4):20–26
66.
Zurück zum Zitat Wang S, Wang Y, Chen CS (2013) An adaptive slicing algorithm and data format for functionally graded material objects. Int J Adv Manuf Tech 65(1-4):251–258 Wang S, Wang Y, Chen CS (2013) An adaptive slicing algorithm and data format for functionally graded material objects. Int J Adv Manuf Tech 65(1-4):251–258
67.
Zurück zum Zitat Yang P, Qian X (2008) Adaptive slicing of moving least squares surfaces: toward direct manufacturing of point set surfaces. J Comput & Inform Sci in Eng 8(3):031003 Yang P, Qian X (2008) Adaptive slicing of moving least squares surfaces: toward direct manufacturing of point set surfaces. J Comput & Inform Sci in Eng 8(3):031003
68.
Zurück zum Zitat Chakraborty D, Reddy BA, Choudhury AR (2008) Extruder path generation for curved layer fused deposition modeling. Compu Aid D 40(2):235–243 Chakraborty D, Reddy BA, Choudhury AR (2008) Extruder path generation for curved layer fused deposition modeling. Compu Aid D 40(2):235–243
69.
Zurück zum Zitat Zhao G, Ma G, Feng J (2018) Nonplanar slicing and path generation methods for robotic additive manufacturing. Int J Adv Manuf Tech 96(9-12):3149–3159 Zhao G, Ma G, Feng J (2018) Nonplanar slicing and path generation methods for robotic additive manufacturing. Int J Adv Manuf Tech 96(9-12):3149–3159
70.
Zurück zum Zitat Ding D, Pan Z, Cuiuri D (2015) Process planning for robotic wire and arc additive manufacturing. ICIEA 2000-2003 Ding D, Pan Z, Cuiuri D (2015) Process planning for robotic wire and arc additive manufacturing. ICIEA 2000-2003
71.
Zurück zum Zitat Nguyen L, Buhl J, Bambach M (2018) Decomposition algorithm for tool path planning for wire-arc additive manufacturing. J Machine Eng 18:96–107 Nguyen L, Buhl J, Bambach M (2018) Decomposition algorithm for tool path planning for wire-arc additive manufacturing. J Machine Eng 18:96–107
72.
Zurück zum Zitat Singh P, Dutta D (2003) Multi-Direction layered deposition–an overview of process planning methodologies. Proceedings of the Solid Freeform Fabrication Symposium: 279-288. Singh P, Dutta D (2003) Multi-Direction layered deposition–an overview of process planning methodologies. Proceedings of the Solid Freeform Fabrication Symposium: 279-288.
73.
Zurück zum Zitat Dunlavey MR (1983) Efficient polygon-filling algorithms for raster displays. TOG 2(4):264–273 Dunlavey MR (1983) Efficient polygon-filling algorithms for raster displays. TOG 2(4):264–273
74.
Zurück zum Zitat Rajan VT, Srinivasan V, Tarabanis KA (2001) The optimal zigzag direction for filling a two-dimensional region. Rapid Prototyping J 7(5):231–241 Rajan VT, Srinivasan V, Tarabanis KA (2001) The optimal zigzag direction for filling a two-dimensional region. Rapid Prototyping J 7(5):231–241
75.
Zurück zum Zitat Ding D, Pan ZS, Cuiuri D (2014) A tool-path generation strategy for wire and arc additive manufacturing. Int J Adv Manuf Tech 73(1-4):173–183 Ding D, Pan ZS, Cuiuri D (2014) A tool-path generation strategy for wire and arc additive manufacturing. Int J Adv Manuf Tech 73(1-4):173–183
76.
Zurück zum Zitat Wang X, Wang A, Li Y (2019) A sequential path-planning methodology for wire and arc additive manufacturing based on a water-pouring rule.Int J Adv Manuf Tech: 1-18. Wang X, Wang A, Li Y (2019) A sequential path-planning methodology for wire and arc additive manufacturing based on a water-pouring rule.Int J Adv Manuf Tech: 1-18.
77.
Zurück zum Zitat Farouki RT, Koenig T, Tarabanis KA (1995) Path planning with offset curves for layered fabrication processes. J Manuf Systems 14(5):355–368 Farouki RT, Koenig T, Tarabanis KA (1995) Path planning with offset curves for layered fabrication processes. J Manuf Systems 14(5):355–368
78.
Zurück zum Zitat Ding D, Pan Z, Cuiuri D (2015) A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures. Robot CIM-INT Manuf 34:8–19 Ding D, Pan Z, Cuiuri D (2015) A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures. Robot CIM-INT Manuf 34:8–19
79.
Zurück zum Zitat Xu X, Ding J, Ganguly S (2019) Preliminary investigation of building strategies of maraging steel bulk material using wire+arc additive manufacture. J Materi Engin&Perform 28(2):594–600 Xu X, Ding J, Ganguly S (2019) Preliminary investigation of building strategies of maraging steel bulk material using wire+arc additive manufacture. J Materi Engin&Perform 28(2):594–600
80.
Zurück zum Zitat Li Z, Ma G, Zhao G (2018) Weave bead welding based wire and arc additive manufacturing technology. Recent Adv in Intell Manuf 408-417. Li Z, Ma G, Zhao G (2018) Weave bead welding based wire and arc additive manufacturing technology. Recent Adv in Intell Manuf 408-417.
81.
Zurück zum Zitat Ma G, Zhao G, Li Z (2019) A path planning method for robotic wire and arc additive manufacturing of thin-walled structures with varying thickness. Mater. Sci. Eng. 470(1) Ma G, Zhao G, Li Z (2019) A path planning method for robotic wire and arc additive manufacturing of thin-walled structures with varying thickness. Mater. Sci. Eng. 470(1)
82.
Zurück zum Zitat Wu D, Huang Y, Chen H (2017) VPPAW penetration monitoring based on fusion of visual and acoustic signals using t-SNE and DBN model. Materials & Design 123:1–14 Wu D, Huang Y, Chen H (2017) VPPAW penetration monitoring based on fusion of visual and acoustic signals using t-SNE and DBN model. Materials & Design 123:1–14
83.
Zurück zum Zitat Raj M, Seamans R (2019) Primer on artificial intelligence and robotics. J Organ D 8(1):11 Raj M, Seamans R (2019) Primer on artificial intelligence and robotics. J Organ D 8(1):11
84.
Zurück zum Zitat Spencer JD, Dickens PM, Wykes CM (2018) Rapid prototyping of metal parts by three-dimensional welding. Proceedings of the Institution of Mechanical Engineers, Part B:J Engin Manuf 212(3):175–182 Spencer JD, Dickens PM, Wykes CM (2018) Rapid prototyping of metal parts by three-dimensional welding. Proceedings of the Institution of Mechanical Engineers, Part B:J Engin Manuf 212(3):175–182
85.
Zurück zum Zitat Wang H, Jiang W, Ouyang J (2014) Rapid prototyping of 4043 Al-alloy parts by VP-GTAW. J Materi Process Tech 148(1):93–102 Wang H, Jiang W, Ouyang J (2014) Rapid prototyping of 4043 Al-alloy parts by VP-GTAW. J Materi Process Tech 148(1):93–102
86.
Zurück zum Zitat Xiong J, Pi Y, Chen H (2019) Deposition height detection and feature point extraction in robotic GTA-based additive manufacturing using passive vision sensing. Robot CIM-INT Manuf 59:326–334 Xiong J, Pi Y, Chen H (2019) Deposition height detection and feature point extraction in robotic GTA-based additive manufacturing using passive vision sensing. Robot CIM-INT Manuf 59:326–334
87.
Zurück zum Zitat Xiong J, Shi M, Liu Y et al Virtual binocular vision sensing and control of molten pool width for gas metal arc additive manufactured thin-walled components. Addit Manuf 33:101121 Xiong J, Shi M, Liu Y et al Virtual binocular vision sensing and control of molten pool width for gas metal arc additive manufactured thin-walled components. Addit Manuf 33:101121
88.
Zurück zum Zitat Govardhan SM, Wikle HC, Nagarajan S (1995) Real-time welding process control using infrared sensing. Proceedings of 1995 American Control Conference-ACC'95 IEEE 3: 1712-1716 Govardhan SM, Wikle HC, Nagarajan S (1995) Real-time welding process control using infrared sensing. Proceedings of 1995 American Control Conference-ACC'95 IEEE 3: 1712-1716
89.
Zurück zum Zitat Liang X, Wang H, Liu Y-H, Chen W, Jing Z (2018) Image-based position control of mobile robots with a completely unknown fixed camera. IEEE Trans. Automat. Contr. 3016 - 3023 Liang X, Wang H, Liu Y-H, Chen W, Jing Z (2018) Image-based position control of mobile robots with a completely unknown fixed camera. IEEE Trans. Automat. Contr. 3016 - 3023
90.
Zurück zum Zitat Le J, Zhang H, Chen X (2017) Right-angle fillet weld tracking by robots based on rotating arc sensors in GMAW. Int J Adv Manuf Techa 93(1-4):605–616 Le J, Zhang H, Chen X (2017) Right-angle fillet weld tracking by robots based on rotating arc sensors in GMAW. Int J Adv Manuf Techa 93(1-4):605–616
91.
Zurück zum Zitat Madigan R (1999) Arc sensing for defects in constant-voltage gas metal arc welding. Weld J 78:322S–328S Madigan R (1999) Arc sensing for defects in constant-voltage gas metal arc welding. Weld J 78:322S–328S
92.
Zurück zum Zitat Shelyagin V, Zaitsev I, Bernatskyi A (2018) Contactless monitoring of welding processes with computer processing of acoustic emission signals.TCSET. IEEE 706-710 Shelyagin V, Zaitsev I, Bernatskyi A (2018) Contactless monitoring of welding processes with computer processing of acoustic emission signals.TCSET. IEEE 706-710
93.
Zurück zum Zitat Shi Y, Zhang G, Li C (2015) Weld pool oscillation frequency in pulsed gas tungsten arc welding with varying weld penetration. CASE. IEEE 401-406 Shi Y, Zhang G, Li C (2015) Weld pool oscillation frequency in pulsed gas tungsten arc welding with varying weld penetration. CASE. IEEE 401-406
94.
Zurück zum Zitat Xu F, Madhaven N, Dhokia V (2016) Multi-sensor system for wire-fed additive manufacture of titanium alloys. FAIM Xu F, Madhaven N, Dhokia V (2016) Multi-sensor system for wire-fed additive manufacture of titanium alloys. FAIM
95.
Zurück zum Zitat Chowdhury S (2016) Artificial neural network based geometric compensation for thermal deformation in additive manufacturing processes. University of Cincinnati Chowdhury S (2016) Artificial neural network based geometric compensation for thermal deformation in additive manufacturing processes. University of Cincinnati
96.
Zurück zum Zitat Zhang Y, Hong GS, Ye D (2018) Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring. Materi&D 156:458–469 Zhang Y, Hong GS, Ye D (2018) Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring. Materi&D 156:458–469
97.
Zurück zum Zitat Sharma A, Arora N, Bhanu K (2015) Mathematical model of bead profile in high deposition welds. J Materi Process Tech 220:65–75 Sharma A, Arora N, Bhanu K (2015) Mathematical model of bead profile in high deposition welds. J Materi Process Tech 220:65–75
98.
Zurück zum Zitat Aviles-Vinas JF, Lopez-Juarez I, Rios-Cabrera R (2015) Acquisition of welding skills in industrial robots. Ind Robot. 42(2):156–166 Aviles-Vinas JF, Lopez-Juarez I, Rios-Cabrera R (2015) Acquisition of welding skills in industrial robots. Ind Robot. 42(2):156–166
99.
Zurück zum Zitat Aviles-Vinas JF, Rios-Cabrera R, Lopez-Juarez I (2016) On-line learning of welding bead geometry in industrial robots. Int J Adv Manuf Technol 83:217–231 Aviles-Vinas JF, Rios-Cabrera R, Lopez-Juarez I (2016) On-line learning of welding bead geometry in industrial robots. Int J Adv Manuf Technol 83:217–231
100.
Zurück zum Zitat Deng J, Xu Y, Zuo Z (2018) Bead geometry prediction for multi-layer and multi-bead wire and arc additive manufacturing based. Trans Intell Weld Manuf: Volume II No. 4 : 125 Deng J, Xu Y, Zuo Z (2018) Bead geometry prediction for multi-layer and multi-bead wire and arc additive manufacturing based. Trans Intell Weld Manuf: Volume II No. 4 : 125
101.
Zurück zum Zitat Cruz JG, Torres EM, Alfaro SCA (2015) A methodology for modeling and control of weld bead width in the GMAW process. J Braz Soc Mech Sci Eng 37:1529–1541 Cruz JG, Torres EM, Alfaro SCA (2015) A methodology for modeling and control of weld bead width in the GMAW process. J Braz Soc Mech Sci Eng 37:1529–1541
102.
Zurück zum Zitat Jin Z, Li H, Gao H (2019) An intelligent weld control strategy based on reinforcement learning approach. Int J Adv Manuf 100(9-12):2163–2175 Jin Z, Li H, Gao H (2019) An intelligent weld control strategy based on reinforcement learning approach. Int J Adv Manuf 100(9-12):2163–2175
103.
Zurück zum Zitat Karmuhilan M (2018) Intelligent process model for bead geometry prediction in WAAM. Materi Today: Proceed 5(11):24005–24013 Karmuhilan M (2018) Intelligent process model for bead geometry prediction in WAAM. Materi Today: Proceed 5(11):24005–24013
104.
Zurück zum Zitat Ding D, Pan Z, Cuiuri D (2016) Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing. Robot CIM-INT Manuf 39:32–42 Ding D, Pan Z, Cuiuri D (2016) Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing. Robot CIM-INT Manuf 39:32–42
105.
Zurück zum Zitat Li Y, Sun Y, Han Q (2018) Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts. J Materi Process Tech 252:838–848 Li Y, Sun Y, Han Q (2018) Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts. J Materi Process Tech 252:838–848
106.
Zurück zum Zitat Fu G, Lourenço MI, Duan M (2016) Influence of the welding sequence on residual stress and distortion of fillet welded structures. Mar Struct 46:30–55 Fu G, Lourenço MI, Duan M (2016) Influence of the welding sequence on residual stress and distortion of fillet welded structures. Mar Struct 46:30–55
107.
Zurück zum Zitat Biswas P, Kumar DA, Mandal NR (2011) A study on the effect of welding sequence in fabrication of large stiffened plate panels. J Mar Sci Tech-Japan 10(4):429–436 Biswas P, Kumar DA, Mandal NR (2011) A study on the effect of welding sequence in fabrication of large stiffened plate panels. J Mar Sci Tech-Japan 10(4):429–436
108.
Zurück zum Zitat Romero-Hdz J, Saha BN, Toledo G (2016) Welding sequence optimization through a modified lowest cost search algorithm. Comput Sci&Engin 6(2):25–32 Romero-Hdz J, Saha BN, Toledo G (2016) Welding sequence optimization through a modified lowest cost search algorithm. Comput Sci&Engin 6(2):25–32
109.
Zurück zum Zitat Fukuda S, Yoshikawa K (1990) Determination of welding sequence: a neural net approach. Eng Anal Bound Elem 7(2):78–82 Fukuda S, Yoshikawa K (1990) Determination of welding sequence: a neural net approach. Eng Anal Bound Elem 7(2):78–82
110.
Zurück zum Zitat Romero-Hdz J, Saha B, Toledo-Ramirez G (2016) Welding sequence optimization using artificial intelligence techniques: an overview. Int J Comput Sci Eng 3(11):90–95 Romero-Hdz J, Saha B, Toledo-Ramirez G (2016) Welding sequence optimization using artificial intelligence techniques: an overview. Int J Comput Sci Eng 3(11):90–95
112.
Zurück zum Zitat Zhang H, Wang X, Wang G (2013) Hybrid direct manufacturing method of metallic parts using deposition and micro continuous rolling. Rapid Prototyping J 19(6):387–394 Zhang H, Wang X, Wang G (2013) Hybrid direct manufacturing method of metallic parts using deposition and micro continuous rolling. Rapid Prototyping J 19(6):387–394
113.
Zurück zum Zitat Plangger J, Schabhüttl P, Vuherer T (2019) CMT additive manufacturing of a high strength steel alloy for application in crane construction. Metals 9(6):650 Plangger J, Schabhüttl P, Vuherer T (2019) CMT additive manufacturing of a high strength steel alloy for application in crane construction. Metals 9(6):650
114.
Zurück zum Zitat Yili D, Shengfu Y, Yusheng S (2018) Wire and arc additive manufacture of high-building multi-directional pipe joint. Int J Adv Manuf Tech 96(5-8):2389–2396 Yili D, Shengfu Y, Yusheng S (2018) Wire and arc additive manufacture of high-building multi-directional pipe joint. Int J Adv Manuf Tech 96(5-8):2389–2396
115.
Zurück zum Zitat Moon KS (2008) Sustainable structural engineering strategies for tall buildings. Struct Des Tall Spec 17(5):895–914 Moon KS (2008) Sustainable structural engineering strategies for tall buildings. Struct Des Tall Spec 17(5):895–914
116.
Zurück zum Zitat Shuai F (2009) Status and prospect of cast steel joint. Guangzhou Architecture Shuai F (2009) Status and prospect of cast steel joint. Guangzhou Architecture
117.
Zurück zum Zitat Gradl PR, Greene SE, Protz C (2018) Additive manufacturing of liquid rocket engine combustion devices: a summary of process developments and hot-fire testing results. JPC 4625. Gradl PR, Greene SE, Protz C (2018) Additive manufacturing of liquid rocket engine combustion devices: a summary of process developments and hot-fire testing results. JPC 4625.
118.
Zurück zum Zitat Greer C, Nycz A, Noakes M, Richardson B, Post B, Kurfess T, Love L (2019) Introduction to the design rules for metal big area additive manufacturing. Additive manufacturing 27:159–166 Greer C, Nycz A, Noakes M, Richardson B, Post B, Kurfess T, Love L (2019) Introduction to the design rules for metal big area additive manufacturing. Additive manufacturing 27:159–166
119.
Zurück zum Zitat Buchanan, C., & Gardner, L. (2019) Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges.Eng. Struct.180, 332-348. Buchanan, C., & Gardner, L. (2019) Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges.Eng. Struct.180, 332-348.
120.
Zurück zum Zitat Wohlers T, Caffrey T (2018). 3D printing and additive manufacturing: state of the industry annual worldwide progress report. Wohlers report. Wohlers T, Caffrey T (2018). 3D printing and additive manufacturing: state of the industry annual worldwide progress report. Wohlers report.
122.
Zurück zum Zitat Nguyen L, Buhl J, Bambach M (2020) Continuous Eulerian tool path strategies for wire-arc additive manufacturing of rib-web structures with machine-learning-based adaptive void filling. Addi Manuf. 101265 Nguyen L, Buhl J, Bambach M (2020) Continuous Eulerian tool path strategies for wire-arc additive manufacturing of rib-web structures with machine-learning-based adaptive void filling. Addi Manuf. 101265
Metadaten
Titel
Wire and arc additive manufacturing of metal components: a review of recent research developments
verfasst von
Jienan Liu
Yanling Xu
Yu Ge
Zhen Hou
Shanben Chen
Publikationsdatum
24.09.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05966-8

Weitere Artikel der Ausgabe 1-2/2020

The International Journal of Advanced Manufacturing Technology 1-2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.