Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 9-10/2022

06.10.2021 | ORIGINAL ARTICLE

Basic tools for vibration analysis with applications to predictive maintenance of rotating machines: an overview

verfasst von: Theodor D. Popescu, Dorel Aiordachioaie, Anisia Culea-Florescu

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 9-10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents some basic tools for vibration signals with application in predictive maintenance of rotating machines. After an overview of the maintenance approach, the condition monitoring in predictive maintenance is discussed. Also, signal processing in vibration monitoring, making use of some basic tools as change detection, independent component analysis, time-frequency analysis, and energy distribution in time-frequency plane are presented. These techniques can be combined in a general approach, offering new possibilities for more robust detection of changes in vibration signals and assuring proactive actions in predictive maintenance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Stankovic L (2001) A measure of some time-frequency distributions concentration. Signal Process: 621–631 Stankovic L (2001) A measure of some time-frequency distributions concentration. Signal Process: 621–631
2.
Zurück zum Zitat Antoni J (2005) Blind separation of vibration components: Principles and demonstrations. Mech Syst Signal Process: 1166–1180 Antoni J (2005) Blind separation of vibration components: Principles and demonstrations. Mech Syst Signal Process: 1166–1180
3.
Zurück zum Zitat Cohen L (1995) Time-frequency distribution. Prentice Hall, New York Cohen L (1995) Time-frequency distribution. Prentice Hall, New York
4.
Zurück zum Zitat Aviyente S (2004) Information processing on the time-frequency plane. Proc. IEEE International Conference Acoustics, Speech, and Signal Processing (ICASSP ’04), pp 617–620 Aviyente S (2004) Information processing on the time-frequency plane. Proc. IEEE International Conference Acoustics, Speech, and Signal Processing (ICASSP ’04), pp 617–620
5.
Zurück zum Zitat Lacey SJ (2010) The role of vibration monitoring in predictive maintenance. FAG Technical Publication, Schaeffler Limited UK Lacey SJ (2010) The role of vibration monitoring in predictive maintenance. FAG Technical Publication, Schaeffler Limited UK
7.
Zurück zum Zitat Wang D (2018) Spectral L2/L1 norm: a new perspective for spectral kurtosis for characterizing non-stationary signals. Mech Syst Signal Process 104:290–293CrossRef Wang D (2018) Spectral L2/L1 norm: a new perspective for spectral kurtosis for characterizing non-stationary signals. Mech Syst Signal Process 104:290–293CrossRef
8.
Zurück zum Zitat Antoni J (2006) The spectral kurtosis: a useful tool for characterising non-stationary signals. Mech Syst Signal Process 20:282–307CrossRef Antoni J (2006) The spectral kurtosis: a useful tool for characterising non-stationary signals. Mech Syst Signal Process 20:282–307CrossRef
9.
Zurück zum Zitat Borghesani P, Pennacchi P, Chatterton S (2014) The relationship between kurtosis- and envelope-based indexes for the diagnostic of rolling element bearings. Mech Syst Signal Process 43:25–43CrossRef Borghesani P, Pennacchi P, Chatterton S (2014) The relationship between kurtosis- and envelope-based indexes for the diagnostic of rolling element bearings. Mech Syst Signal Process 43:25–43CrossRef
10.
Zurück zum Zitat Randall RB, Antoni J, Chobsaard S (2001) The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals. Mech Syst Signal Process 15:945–962CrossRef Randall RB, Antoni J, Chobsaard S (2001) The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals. Mech Syst Signal Process 15:945–962CrossRef
11.
Zurück zum Zitat Wang D, Zhao X, Kou L. -L, Qin Y, Zhao Y, Tsui K. -L (2019) A simple and fast guideline for generating enhanced/squared envelope spectra from spectral coherence for bearing fault diagnosis. Mech Syst Signal Process 122:754–768CrossRef Wang D, Zhao X, Kou L. -L, Qin Y, Zhao Y, Tsui K. -L (2019) A simple and fast guideline for generating enhanced/squared envelope spectra from spectral coherence for bearing fault diagnosis. Mech Syst Signal Process 122:754–768CrossRef
12.
13.
Zurück zum Zitat Popescu TD (2010) Blind separation of vibration signals and source change detection - application to machine monitoring. Appl Math Model: 3408–3421 Popescu TD (2010) Blind separation of vibration signals and source change detection - application to machine monitoring. Appl Math Model: 3408–3421
14.
Zurück zum Zitat Popescu TD (2014) Signal segmentation using changing regression models with application in seismic engineering. Digital Signal Processing: 14–26 Popescu TD (2014) Signal segmentation using changing regression models with application in seismic engineering. Digital Signal Processing: 14–26
15.
Zurück zum Zitat Popescu TD (2011) Detection and diagnosis of model parameter and noise variance changes with application in seismic signal processing. Mech Syst Signal Process: 1598–1616 Popescu TD (2011) Detection and diagnosis of model parameter and noise variance changes with application in seismic signal processing. Mech Syst Signal Process: 1598–1616
16.
Zurück zum Zitat Basseville M, Nikiforov I (1993) Detection of abrupt changes - theory and applications. Prentice Hall: N.J. Basseville M, Nikiforov I (1993) Detection of abrupt changes - theory and applications. Prentice Hall: N.J.
17.
Zurück zum Zitat Gustafsson F (2001) Adaptive filtering and change detection. Wiley Gustafsson F (2001) Adaptive filtering and change detection. Wiley
18.
Zurück zum Zitat Ohlson H, Ljung L, Boyd S (2010) Segmentation ARX-models using sum-of-norms regularization. Automatica IFAC 46(6):1107–1111MathSciNetCrossRef Ohlson H, Ljung L, Boyd S (2010) Segmentation ARX-models using sum-of-norms regularization. Automatica IFAC 46(6):1107–1111MathSciNetCrossRef
19.
Zurück zum Zitat Hubert P, Padovese L, Stern JM (2018) A sequential algorithm for signal segmentation. Entropy MDPI: 1–20 Hubert P, Padovese L, Stern JM (2018) A sequential algorithm for signal segmentation. Entropy MDPI: 1–20
20.
Zurück zum Zitat Zimroz R, Madziarz M, Zak G, Wylomanska A, Obuchowski J (2015) Seismic signal segmentation procedure using time-frequency decomposition and statistical modeling. Journal of Vibroengineering 17:3111–3121 Zimroz R, Madziarz M, Zak G, Wylomanska A, Obuchowski J (2015) Seismic signal segmentation procedure using time-frequency decomposition and statistical modeling. Journal of Vibroengineering 17:3111–3121
21.
Zurück zum Zitat Wang D, Tsui K. -L, Qin Y (2019) Optimization of segmentation fragments in empirical wavelet transform and its applications to extracting industrial bearing fault features. Measurement 133:328–340CrossRef Wang D, Tsui K. -L, Qin Y (2019) Optimization of segmentation fragments in empirical wavelet transform and its applications to extracting industrial bearing fault features. Measurement 133:328–340CrossRef
22.
Zurück zum Zitat Hyvärinen A., Karhunen J, Oja E (2001) Independent component analysis. John Wiley Hyvärinen A., Karhunen J, Oja E (2001) Independent component analysis. John Wiley
23.
Zurück zum Zitat Parra L, Spence C (2000) Convolutive blind source separation of non-stationary signals. IEEE Trans Speech Audio Process 6:320–327CrossRef Parra L, Spence C (2000) Convolutive blind source separation of non-stationary signals. IEEE Trans Speech Audio Process 6:320–327CrossRef
24.
Zurück zum Zitat Der R (2001) Blind signal separation. Technical Report, Department of Electrical & Computer Engineering McGill University Der R (2001) Blind signal separation. Technical Report, Department of Electrical & Computer Engineering McGill University
25.
Zurück zum Zitat Belouchrani A, Abed Meraim K, Cardoso JF, Moulines E (1997) A blind source separation technique using second - order statistics. IEEE Trans Signal Process 45:434–444CrossRef Belouchrani A, Abed Meraim K, Cardoso JF, Moulines E (1997) A blind source separation technique using second - order statistics. IEEE Trans Signal Process 45:434–444CrossRef
26.
Zurück zum Zitat Cardoso JF, Souloumiac A (1993) Blind beamforming for non gaussian signals. IEE Proceedings-F: 362–370 Cardoso JF, Souloumiac A (1993) Blind beamforming for non gaussian signals. IEE Proceedings-F: 362–370
27.
Zurück zum Zitat Hyvarinen A, Oja E (1997) A fast fixed-point algorithm for independent component analysis. Neural Comput 9:1483–1492CrossRef Hyvarinen A, Oja E (1997) A fast fixed-point algorithm for independent component analysis. Neural Comput 9:1483–1492CrossRef
28.
Zurück zum Zitat Gribonval R, Benaroya L, Vincent E, Fevotte C (2002) Proposal for performance measurement in source separation. Publication Interne, No. 1501 IRISA Gribonval R, Benaroya L, Vincent E, Fevotte C (2002) Proposal for performance measurement in source separation. Publication Interne, No. 1501 IRISA
29.
Zurück zum Zitat Heeris J (2007) Single channel blind source separation using independent subspace analysis, Bachelor of Engineering Thesis, School of Electrical, Electronic and Computer Engineering. The University of Western Australia, Australia Heeris J (2007) Single channel blind source separation using independent subspace analysis, Bachelor of Engineering Thesis, School of Electrical, Electronic and Computer Engineering. The University of Western Australia, Australia
30.
Zurück zum Zitat Hong H, Liang M (2007) Separation of fault features from a single-channel mechanical signal mixture using wavelet decomposition. Mech Syst Signal Process 21:2025–2040CrossRef Hong H, Liang M (2007) Separation of fault features from a single-channel mechanical signal mixture using wavelet decomposition. Mech Syst Signal Process 21:2025–2040CrossRef
31.
Zurück zum Zitat He P, She T, Li W, Yuan W (2018) Single channel blind source separation on the instantaneous mixed signal of multiple dynamic sources. Mech Syst Signal Process 113:22–35CrossRef He P, She T, Li W, Yuan W (2018) Single channel blind source separation on the instantaneous mixed signal of multiple dynamic sources. Mech Syst Signal Process 113:22–35CrossRef
32.
Zurück zum Zitat Wang D, Guo W, Tse PW (2016) An enhanced empirical mode decomposition method for blind component separation of a single-channel vibration signal mixture. J Vib Control 22:2603–2618CrossRef Wang D, Guo W, Tse PW (2016) An enhanced empirical mode decomposition method for blind component separation of a single-channel vibration signal mixture. J Vib Control 22:2603–2618CrossRef
33.
Zurück zum Zitat Hild IIKE, Erdogmus D, Principe JC (2006) An analysis of entropy estimators for blind source separation. Signal Process 86:182–194CrossRef Hild IIKE, Erdogmus D, Principe JC (2006) An analysis of entropy estimators for blind source separation. Signal Process 86:182–194CrossRef
34.
Zurück zum Zitat Sejdić E, Djurović I, Jiang J (2009) Time-frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing: 153–183 Sejdić E, Djurović I, Jiang J (2009) Time-frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing: 153–183
35.
Zurück zum Zitat Mallat SG (1999) A wavetet tour of signal processing. Academic Press, CambridgeMATH Mallat SG (1999) A wavetet tour of signal processing. Academic Press, CambridgeMATH
36.
Zurück zum Zitat Gröchenig K. (2001) Foundations of time-frequency analysis. Birkhäuser Gröchenig K. (2001) Foundations of time-frequency analysis. Birkhäuser
37.
Zurück zum Zitat Daubechies I (1992) Ten lectures on wavelets. SIAM Daubechies I (1992) Ten lectures on wavelets. SIAM
38.
Zurück zum Zitat Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process: 3397–3415 Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process: 3397–3415
39.
Zurück zum Zitat Antoni J (2003) On the benefits of the Wigner-Ville spectrum for analysing certain types of vibration signals. In: Proc. WESPAC 8, The 8-th Western Pacific Acoustics Conference, Melbourne Antoni J (2003) On the benefits of the Wigner-Ville spectrum for analysing certain types of vibration signals. In: Proc. WESPAC 8, The 8-th Western Pacific Acoustics Conference, Melbourne
40.
Zurück zum Zitat Boashash B (2003) Time frequency signal analysis and processing: A compressive reference. Elsevier Boashash B (2003) Time frequency signal analysis and processing: A compressive reference. Elsevier
41.
Zurück zum Zitat Cohen L (1989) Time frequency distribution: a review, Proc. of IEEE, pp 941–981 Cohen L (1989) Time frequency distribution: a review, Proc. of IEEE, pp 941–981
42.
Zurück zum Zitat Flandrin P (1998) Temps-fréquence. Hermes Flandrin P (1998) Temps-fréquence. Hermes
43.
Zurück zum Zitat Hlwatsch F, Boudreaux-Bartels GF (1992) Linear and quadratic time-frequency signal representations. IEEE Signal Process Mag: 21–67 Hlwatsch F, Boudreaux-Bartels GF (1992) Linear and quadratic time-frequency signal representations. IEEE Signal Process Mag: 21–67
44.
Zurück zum Zitat Hussain M, Bouashash B (2000) Multi-component IF estimation. Proceedings of the 10th IEEE Workshop on statistical signal and array processing - SSAP, pp 559–563 Hussain M, Bouashash B (2000) Multi-component IF estimation. Proceedings of the 10th IEEE Workshop on statistical signal and array processing - SSAP, pp 559–563
45.
Zurück zum Zitat Jeong J, Williams WJ (1992) Kernel design for reduced interference distributions. IEEE Trans Signal Process, pp 402–4012 Jeong J, Williams WJ (1992) Kernel design for reduced interference distributions. IEEE Trans Signal Process, pp 402–4012
46.
Zurück zum Zitat Yang Y, Peng Z, Zhang W, Meng G (2019) Parameterised time-frequency analysis methods and their engineering applications: a review of recent advances. Mech Sys Signal Process 119:182–221CrossRef Yang Y, Peng Z, Zhang W, Meng G (2019) Parameterised time-frequency analysis methods and their engineering applications: a review of recent advances. Mech Sys Signal Process 119:182–221CrossRef
47.
Zurück zum Zitat Feng Z, Liang M, Chu F (2013) Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples. Mech Syst Signal Process 38:165–205CrossRef Feng Z, Liang M, Chu F (2013) Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples. Mech Syst Signal Process 38:165–205CrossRef
48.
Zurück zum Zitat Al-Badour F, Sunar M, Cheded L (2011) Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques. Mech Syst Signal Process 25:2083–2101CrossRef Al-Badour F, Sunar M, Cheded L (2011) Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques. Mech Syst Signal Process 25:2083–2101CrossRef
49.
Zurück zum Zitat Manson G, Staszewski WJ, Barszcz T, Worden K (2015) A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions. Mech Syst Signal Process 64-65:188–216CrossRef Manson G, Staszewski WJ, Barszcz T, Worden K (2015) A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions. Mech Syst Signal Process 64-65:188–216CrossRef
50.
Zurück zum Zitat Cohen L (1990) Distributions concentrated along the instantaneous frequency, SPIE. Adv. Signal Process. Algebra Arch Imp: 149–157 Cohen L (1990) Distributions concentrated along the instantaneous frequency, SPIE. Adv. Signal Process. Algebra Arch Imp: 149–157
51.
Zurück zum Zitat Jones DL, Parks TW (1990) A high resolution data-adaptive time-frequency representation. IEEE Trans. Signal Process Jones DL, Parks TW (1990) A high resolution data-adaptive time-frequency representation. IEEE Trans. Signal Process
52.
Zurück zum Zitat Sang TH, Williams WJ (1995) Rényi information and signal dependent optimal kernel design. Proc. of the ICASSP: 997–1000 Sang TH, Williams WJ (1995) Rényi information and signal dependent optimal kernel design. Proc. of the ICASSP: 997–1000
53.
Zurück zum Zitat Williams WJ, Brown ML, Hero AO (1991) Uncertainity, information and time-frequency distributions. SPIE Adv Signal Process Algebra Arch Imp, pp 144–156 Williams WJ, Brown ML, Hero AO (1991) Uncertainity, information and time-frequency distributions. SPIE Adv Signal Process Algebra Arch Imp, pp 144–156
54.
Zurück zum Zitat Flandrin P, Baraniuk RG, Michel O (1994) Time-frequency complexity and information. Proceedings of the ICASSP: 329–332 Flandrin P, Baraniuk RG, Michel O (1994) Time-frequency complexity and information. Proceedings of the ICASSP: 329–332
55.
Zurück zum Zitat Baraniuk RG, Jones DL, A signal dependent time-frequency representation (1993) Optimal kernel design. IEEE Trans Signal Process: 1589–1602 Baraniuk RG, Jones DL, A signal dependent time-frequency representation (1993) Optimal kernel design. IEEE Trans Signal Process: 1589–1602
56.
Zurück zum Zitat Baraniuk RG, Jones DL (1993) Signal-dependent time-frequency analysis using radially Gaussian kernel. IEEE Trans Signal Process: 263–284 Baraniuk RG, Jones DL (1993) Signal-dependent time-frequency analysis using radially Gaussian kernel. IEEE Trans Signal Process: 263–284
57.
Zurück zum Zitat Jones DL, Baraniuk RG (1995) An adaptive optimal-kernel time-frequency representation. IEEE Trans Signal Process: 2361–2372 Jones DL, Baraniuk RG (1995) An adaptive optimal-kernel time-frequency representation. IEEE Trans Signal Process: 2361–2372
58.
Zurück zum Zitat Baraniuk RG, Flandrin P, Janssen AJEM, Michel OJJ (2001) Measuring time-frequency information content using the Rényi entropies. IEEE Trans Inf Theory: 1391–1409 Baraniuk RG, Flandrin P, Janssen AJEM, Michel OJJ (2001) Measuring time-frequency information content using the Rényi entropies. IEEE Trans Inf Theory: 1391–1409
59.
Zurück zum Zitat Liuni M, Röbel A, Romito M, Rodet X (2011) Rényi information measures for spectral change detection, CASSP, Prague, Czech Republic hal-01161299 Liuni M, Röbel A, Romito M, Rodet X (2011) Rényi information measures for spectral change detection, CASSP, Prague, Czech Republic hal-01161299
60.
Zurück zum Zitat Bercher JF (2008) On some entropy functionals derived from Rényi information divergence. Information Sciences, vol 178. Elsevier, Amsterdam. 2489-2506hal-00276749MATH Bercher JF (2008) On some entropy functionals derived from Rényi information divergence. Information Sciences, vol 178. Elsevier, Amsterdam. 2489-2506hal-00276749MATH
61.
Zurück zum Zitat Eisberg R, Resnick R (1974) Quantum physics. Wiley Eisberg R, Resnick R (1974) Quantum physics. Wiley
62.
Zurück zum Zitat Yu G (2020) A concentrated time-frequency analysis tool for bearing fault diagnosis. IEEE Trans Instrum Meas 69:371–381CrossRef Yu G (2020) A concentrated time-frequency analysis tool for bearing fault diagnosis. IEEE Trans Instrum Meas 69:371–381CrossRef
63.
Zurück zum Zitat Baur M, Albertelli P, Monno M (2020) A review of prognostics and health management of machine tools. Int J Adv Manuf Technol 107:2843–2863CrossRef Baur M, Albertelli P, Monno M (2020) A review of prognostics and health management of machine tools. Int J Adv Manuf Technol 107:2843–2863CrossRef
64.
Zurück zum Zitat Gao Z, Cecati C, Ding S (2015) A survey of fault diagnosis and fault-tolerant techniques-part i: fault diagnosis with model-based and signal-based approaches. IEEE Trans Ind Electron: 3757–3767 Gao Z, Cecati C, Ding S (2015) A survey of fault diagnosis and fault-tolerant techniques-part i: fault diagnosis with model-based and signal-based approaches. IEEE Trans Ind Electron: 3757–3767
65.
Zurück zum Zitat Rehorn A, Jiang J, Orban P (2005) State-of-the-art methods and results in tool condition monitoring: a review. Int J Adv Manuf Technol 26:693–710CrossRef Rehorn A, Jiang J, Orban P (2005) State-of-the-art methods and results in tool condition monitoring: a review. Int J Adv Manuf Technol 26:693–710CrossRef
66.
Zurück zum Zitat Ibarra-Zarate D, Tamayo-Pazos O, Vallejo-Guevara A (2019) Bearing fault diagnosis in rotating machinery based on cepstrum pre-whitening of vibration and acoustic emission. Int J Adv Manuf Technol 104:4155–4168CrossRef Ibarra-Zarate D, Tamayo-Pazos O, Vallejo-Guevara A (2019) Bearing fault diagnosis in rotating machinery based on cepstrum pre-whitening of vibration and acoustic emission. Int J Adv Manuf Technol 104:4155–4168CrossRef
67.
Zurück zum Zitat Tarek K, Abderrazek D, Khemissi BM, et al. (2020) Comparative study between cyclostationary analysis, EMD, and CEEMDAN for the vibratory diagnosis of rotating machines in industrial environment. Int J Adv Manuf Technol 109:2747–2775CrossRef Tarek K, Abderrazek D, Khemissi BM, et al. (2020) Comparative study between cyclostationary analysis, EMD, and CEEMDAN for the vibratory diagnosis of rotating machines in industrial environment. Int J Adv Manuf Technol 109:2747–2775CrossRef
68.
Zurück zum Zitat Youcef Khodja A, Guersi N, Saadi MN, et al. (2020) Rolling element bearing fault diagnosis for rotating machinery using vibration spectrum imaging and convolutional neural networks. Int J Adv Manuf Technol 106:1737–1751CrossRef Youcef Khodja A, Guersi N, Saadi MN, et al. (2020) Rolling element bearing fault diagnosis for rotating machinery using vibration spectrum imaging and convolutional neural networks. Int J Adv Manuf Technol 106:1737–1751CrossRef
69.
Zurück zum Zitat Zhang Z, Wang Y, Wang K (2013) Intelligent fault diagnosis and prognosis approach for rotating machinery integrating wavelet transform, principal component analysis, and artificial neural networks. Int J Adv Manuf Technol 68:763–773CrossRef Zhang Z, Wang Y, Wang K (2013) Intelligent fault diagnosis and prognosis approach for rotating machinery integrating wavelet transform, principal component analysis, and artificial neural networks. Int J Adv Manuf Technol 68:763–773CrossRef
70.
Zurück zum Zitat Duan Z, Wu T, Guo S, et al. (2018) Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: a review. Int J Adv Manuf Technol 96:803–819CrossRef Duan Z, Wu T, Guo S, et al. (2018) Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: a review. Int J Adv Manuf Technol 96:803–819CrossRef
71.
Zurück zum Zitat Babouri MK, Ouelaa N, Kebabsa T, et al. (2019) Application of the cyclostationarity analysis in the detection of mechanical defects: comparative study. Int J Adv Manuf Technol 103:1681– 1699CrossRef Babouri MK, Ouelaa N, Kebabsa T, et al. (2019) Application of the cyclostationarity analysis in the detection of mechanical defects: comparative study. Int J Adv Manuf Technol 103:1681– 1699CrossRef
72.
Zurück zum Zitat Popescu T. h. D, Aiordachioaie D (2019) Fault detection of rolling element bearings using optimal segmentation of vibrating signals. Mech Syst Signal Process: 370–391 Popescu T. h. D, Aiordachioaie D (2019) Fault detection of rolling element bearings using optimal segmentation of vibrating signals. Mech Syst Signal Process: 370–391
73.
Zurück zum Zitat Aiordachioaie D, Popescu TD VIBROCHANGE - A development system for condition monitoring based on advanced techniques of signal processing, Int J Adv Manuf Technol: 919-936 Aiordachioaie D, Popescu TD VIBROCHANGE - A development system for condition monitoring based on advanced techniques of signal processing, Int J Adv Manuf Technol: 919-936
74.
Zurück zum Zitat Popescu TD (2010) Analysis of traffic-induced vibrations by blind source separation with application in building monitoring. Math Comput Simul: 2392–2403 Popescu TD (2010) Analysis of traffic-induced vibrations by blind source separation with application in building monitoring. Math Comput Simul: 2392–2403
75.
Zurück zum Zitat Popescu TD (2011) A new approach for dam monitoring and surveillance using blind source separation. Int J Innov Comput Inf Control: 3811–3824 Popescu TD (2011) A new approach for dam monitoring and surveillance using blind source separation. Int J Innov Comput Inf Control: 3811–3824
76.
Zurück zum Zitat Popescu TD, Aiordachioaie D (2017) New procedure for change detection operating on Rényi entropy with application in seismic signals processing, Circuits, Systems, and Signal Processing: 3778–3798 Popescu TD, Aiordachioaie D (2017) New procedure for change detection operating on Rényi entropy with application in seismic signals processing, Circuits, Systems, and Signal Processing: 3778–3798
77.
Zurück zum Zitat Popescu TD, Aiordachioaie D (2013) Signal segmentation in time-frequency plane using Rényi entropy - application in seismic signal processing. In: Proceedings of The 2-nd IEEE International Conference on Control and Fault-Tolerant Systems (SysTol13), Nice, France, pp 312–317 Popescu TD, Aiordachioaie D (2013) Signal segmentation in time-frequency plane using Rényi entropy - application in seismic signal processing. In: Proceedings of The 2-nd IEEE International Conference on Control and Fault-Tolerant Systems (SysTol13), Nice, France, pp 312–317
78.
Zurück zum Zitat Zhang B, et al. (2008) Rolling element bearing feature extraction and anomaly detection based on vibration monitoring. Proceedings of The 16-th Mediterranean conference on control and automation, pp 1792–1797 Zhang B, et al. (2008) Rolling element bearing feature extraction and anomaly detection based on vibration monitoring. Proceedings of The 16-th Mediterranean conference on control and automation, pp 1792–1797
79.
Zurück zum Zitat Howard I, Howard IM (1994) A review of rolling element bearing vibration: detection, diagnosis and prognosis. DSTO Aeronautical and maritime research laboratory, Melbourne Howard I, Howard IM (1994) A review of rolling element bearing vibration: detection, diagnosis and prognosis. DSTO Aeronautical and maritime research laboratory, Melbourne
80.
Zurück zum Zitat Shi DF, Wang WJ, Qu LS (2004) Defect detection for bearings using envelope spectra of wavelet transform. J Vib Acoust: pp 567–573 Shi DF, Wang WJ, Qu LS (2004) Defect detection for bearings using envelope spectra of wavelet transform. J Vib Acoust: pp 567–573
81.
Zurück zum Zitat Ghafari SH (2007) A fault diagnosis system for rotary machinery supported by rolling element bearings. PhD Thesis, University of Waterloo Ghafari SH (2007) A fault diagnosis system for rotary machinery supported by rolling element bearings. PhD Thesis, University of Waterloo
82.
Zurück zum Zitat Yang B-S, Lim D-S, Tan ACCT (2005) Vibex: an expert system for vibration fault diagnosis of rotating machinery using decision tree and decision table. Expert Syst Appl: 735–742 Yang B-S, Lim D-S, Tan ACCT (2005) Vibex: an expert system for vibration fault diagnosis of rotating machinery using decision tree and decision table. Expert Syst Appl: 735–742
83.
Zurück zum Zitat Ebersbach S, Peng Z (2008) Expert system development for vibration analysis in machine condition monitoring. Expert Syst Appl: 291–299 Ebersbach S, Peng Z (2008) Expert system development for vibration analysis in machine condition monitoring. Expert Syst Appl: 291–299
84.
Zurück zum Zitat Lei Y, He Z, Zi Y (2008) A new approach to intelligent fault diagnosis of rotating machinery. Expert Sys Appl: 1593–1600 Lei Y, He Z, Zi Y (2008) A new approach to intelligent fault diagnosis of rotating machinery. Expert Sys Appl: 1593–1600
85.
Zurück zum Zitat Sun Q, Chen P, Zhang D, Xi F (2004) Pattern recognition for automatic machinery fault diagnosis. J. Vib. Acoust: 307–316 Sun Q, Chen P, Zhang D, Xi F (2004) Pattern recognition for automatic machinery fault diagnosis. J. Vib. Acoust: 307–316
86.
Zurück zum Zitat Edwards S, Lees AW, Friswell IM (1998), Fault diagnosis of rotating machinery. Shock and vibration digest Edwards S, Lees AW, Friswell IM (1998), Fault diagnosis of rotating machinery. Shock and vibration digest
87.
Zurück zum Zitat Lin J, Qu LL (2000) Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis. J Sound Vib: 135–148 Lin J, Qu LL (2000) Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis. J Sound Vib: 135–148
88.
Zurück zum Zitat Kim YY, Hong JC, Lee NY (2001) Frequency response function estimation via a robust wavelet de-noising method. J. Sound Vib 635–649 Kim YY, Hong JC, Lee NY (2001) Frequency response function estimation via a robust wavelet de-noising method. J. Sound Vib 635–649
89.
Zurück zum Zitat Lin J, Zuo MJ, Fyfe KR (2004) Mechanical fault detection based on the wavelet de-noising technique. J Vib Acoust: 9–16 Lin J, Zuo MJ, Fyfe KR (2004) Mechanical fault detection based on the wavelet de-noising technique. J Vib Acoust: 9–16
90.
Zurück zum Zitat Singh GK, Ahmed SAKS (2004) Vibration signal analysis using wavelet transform for isolation and identification of electrical faults in induction machine. Electric Power Sys Res: 119–136 Singh GK, Ahmed SAKS (2004) Vibration signal analysis using wavelet transform for isolation and identification of electrical faults in induction machine. Electric Power Sys Res: 119–136
91.
Zurück zum Zitat Luo GY, Osypiw D, Irle M (2003) On-line vibration analysis with fast continuous wavelet algorithm for condition monitoring of bearing. J Vib Control: 931–947 Luo GY, Osypiw D, Irle M (2003) On-line vibration analysis with fast continuous wavelet algorithm for condition monitoring of bearing. J Vib Control: 931–947
92.
Zurück zum Zitat Mallat S, Hwang WL (1992) Singularity detection and processing with wavelets. IEEE Trans Inf Theory: 617–643 Mallat S, Hwang WL (1992) Singularity detection and processing with wavelets. IEEE Trans Inf Theory: 617–643
93.
Zurück zum Zitat Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory: 613–627 Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory: 613–627
94.
Zurück zum Zitat Kazzaz SASA, Singh GK (2003) Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques. Electric Power Sys Res: 197–221 Kazzaz SASA, Singh GK (2003) Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques. Electric Power Sys Res: 197–221
95.
Zurück zum Zitat Clayton EH, Koh B-H, Xing G, Fok C-L, Dyke SJ, Lu C (2005) Damage detection and correlation-based localization using wireless mote sensors Clayton EH, Koh B-H, Xing G, Fok C-L, Dyke SJ, Lu C (2005) Damage detection and correlation-based localization using wireless mote sensors
96.
Zurück zum Zitat Parlar J (2010) Vibration analysis & vibration screens: theory & practice, PhD Thesis, McMaster University, Canada Parlar J (2010) Vibration analysis & vibration screens: theory & practice, PhD Thesis, McMaster University, Canada
97.
Zurück zum Zitat de Moura EP, Souto CR, Silva AA, Irmão MAS (2011) Evaluation of principal component analysis and neural network performance for bearing fault diagnosis from vibration signal processed by RS and DF analyses. Mech. Syst. Signal Process: 1765–1772 de Moura EP, Souto CR, Silva AA, Irmão MAS (2011) Evaluation of principal component analysis and neural network performance for bearing fault diagnosis from vibration signal processed by RS and DF analyses. Mech. Syst. Signal Process: 1765–1772
98.
Zurück zum Zitat Ahmed M, Baqqar M, Gu F, Ball AD (2012) Fault detection and diagnosis using principal component analysis of vibration data from a reciprocating compressor. Proceedings of UKACC International Conference on Control: 461–466 Ahmed M, Baqqar M, Gu F, Ball AD (2012) Fault detection and diagnosis using principal component analysis of vibration data from a reciprocating compressor. Proceedings of UKACC International Conference on Control: 461–466
99.
Zurück zum Zitat Chopade SA, Gaikwad JA, Kulkarni JV (2016) Bearing fault detection using PCA and wavelet based envelope analysis. Proc The 2-nd international conference on applied and theoretical computing and communication technology (iCATccT), pp 248–253 Chopade SA, Gaikwad JA, Kulkarni JV (2016) Bearing fault detection using PCA and wavelet based envelope analysis. Proc The 2-nd international conference on applied and theoretical computing and communication technology (iCATccT), pp 248–253
Metadaten
Titel
Basic tools for vibration analysis with applications to predictive maintenance of rotating machines: an overview
verfasst von
Theodor D. Popescu
Dorel Aiordachioaie
Anisia Culea-Florescu
Publikationsdatum
06.10.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 9-10/2022
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07703-1

Weitere Artikel der Ausgabe 9-10/2022

The International Journal of Advanced Manufacturing Technology 9-10/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.