Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 11-12/2022

23.07.2022 | ORIGINAL ARTICLE

Thermal error modeling of electric spindle based on particle swarm optimization-SVM neural network

verfasst von: Zhaolong Li, Wenming Zhu, Bo Zhu, Baodong Wang, Qinghai Wang

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 11-12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High-speed electric spindle is an important part of computer numerical control (CNC) machining equipment. The thermal displacement generated by the electric spindle during operation is the main reason that affects the machining stability and machining accuracy of the electric spindle. Compensating the thermal error of the high-speed electric spindle can effectively improve the CNC machining. Improve equipment processing performance. Therefore, it is particularly important to establish the accuracy of the thermal error prediction model. Taking the A02 high-speed electric spindle as the research object, ANSYS is used to analyze the thermal characteristics of the electric spindle, and the temperature and thermal displacement monitoring points of the electric spindle are arranged according to the simulation results, and the temperature and thermal displacement data of the monitoring points under different rotational speeds are collected; using K-means to classify temperature measurement points, uses the gray relation analysis degree to determine the correlation between the temperature measurement point and the thermal displacement data, and selects 4 temperature-sensitive points from 10 temperature measurement points. Finally, particle swarm optimization (PSO) is used to optimize the penalty factor and kernel function of support vector machine (SVM), and the PSO-SVM prediction model is established to compare with the neural network prediction model of SVM and genetic algorithm (GA) optimized SVM. The results show that PSO-SVM has better robustness, stability, and generalization ability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu K, Han W, Wang YQ, Liu HB, Song L (2021) Review on thermal error compensation for axes of CNC machine tools. J Mech Eng 57:156–173 Liu K, Han W, Wang YQ, Liu HB, Song L (2021) Review on thermal error compensation for axes of CNC machine tools. J Mech Eng 57:156–173
2.
Zurück zum Zitat Li Y, Yu ML, Bai YM, Hou ZY, Wu WW (2021) A review of thermal error modeling methods for machine tools. Appl Sci 11(11):5216CrossRef Li Y, Yu ML, Bai YM, Hou ZY, Wu WW (2021) A review of thermal error modeling methods for machine tools. Appl Sci 11(11):5216CrossRef
3.
Zurück zum Zitat Wang HT, Li TM, Wang LP, Li FC (2015) Review on thermal error modeling of machine tools. J Mech Eng 51:119–128CrossRef Wang HT, Li TM, Wang LP, Li FC (2015) Review on thermal error modeling of machine tools. J Mech Eng 51:119–128CrossRef
4.
Zurück zum Zitat Dai Y, Tao XS, Li ZL, Zhan SQ, Li Y, Gao YH (2022) A review of key technologies for high-speed motorized spindles of CNC machine tools. Machines 10(2):145CrossRef Dai Y, Tao XS, Li ZL, Zhan SQ, Li Y, Gao YH (2022) A review of key technologies for high-speed motorized spindles of CNC machine tools. Machines 10(2):145CrossRef
5.
Zurück zum Zitat Yue HT, Guo CG, Li Q, Zhao LJ, Hao GB (2020) Thermal error modeling of CNC milling machine tool spindle system in load machining: based on optimal specific cutting energy. J Braz Soc Mech Sci Eng 42(9):1–12CrossRef Yue HT, Guo CG, Li Q, Zhao LJ, Hao GB (2020) Thermal error modeling of CNC milling machine tool spindle system in load machining: based on optimal specific cutting energy. J Braz Soc Mech Sci Eng 42(9):1–12CrossRef
6.
Zurück zum Zitat Yang J, Shi H, Feng B, Zhao L, Ma C, Mei XS (2015) Thermal error modeling and compensation for a high-speed motorized spindle. Int J Adv Manuf Technol 77(5):1005–1017CrossRef Yang J, Shi H, Feng B, Zhao L, Ma C, Mei XS (2015) Thermal error modeling and compensation for a high-speed motorized spindle. Int J Adv Manuf Technol 77(5):1005–1017CrossRef
7.
Zurück zum Zitat Liu JY, Cai YH, Zhang QJ, Zhang HF, He H, Gao XD, Ding LT (2021) Thermal error analysis of taurenEDM machine tool based on FCM fuzzy clustering and RBF neural network. J Intell Fuzzy Syst 1–12 Liu JY, Cai YH, Zhang QJ, Zhang HF, He H, Gao XD, Ding LT (2021) Thermal error analysis of taurenEDM machine tool based on FCM fuzzy clustering and RBF neural network. J Intell Fuzzy Syst 1–12
8.
Zurück zum Zitat Fu GQ, Gong HW, Gao HL, Gu TD, Cao ZQ (2019) Integrated thermal error modeling of machine tool spindle using a chicken swarm optimization algorithm-based radial basic function neural network. Int J Adv Manuf Technol 105(5):2039–2055CrossRef Fu GQ, Gong HW, Gao HL, Gu TD, Cao ZQ (2019) Integrated thermal error modeling of machine tool spindle using a chicken swarm optimization algorithm-based radial basic function neural network. Int J Adv Manuf Technol 105(5):2039–2055CrossRef
9.
Zurück zum Zitat Huang Z, Liu YC, Du L, Yang H (2020) Thermal error analysis, modeling and compensation of five-axis machine tools. J Mech Sci Technol 34(10):4295–4305CrossRef Huang Z, Liu YC, Du L, Yang H (2020) Thermal error analysis, modeling and compensation of five-axis machine tools. J Mech Sci Technol 34(10):4295–4305CrossRef
10.
Zurück zum Zitat Cui L, Wang QS (2018) Thermal properties analysis of compact motorized spindle considering fluid-solid thermal coupling. IOP Conf Ser Mater Sci Eng 389(1):012004CrossRef Cui L, Wang QS (2018) Thermal properties analysis of compact motorized spindle considering fluid-solid thermal coupling. IOP Conf Ser Mater Sci Eng 389(1):012004CrossRef
11.
Zurück zum Zitat Chen B, Guan X, Cai DC, Li HL (2022) Simulation on thermal characteristics of high-speed motorized spindle. Case Stud Therm Eng 102144 Chen B, Guan X, Cai DC, Li HL (2022) Simulation on thermal characteristics of high-speed motorized spindle. Case Stud Therm Eng 102144
12.
Zurück zum Zitat Li YF, Zhang YJ, Zhao YQ, Shi XJ (2021) Thermal-mechanical coupling calculation method for deformation error of motorized spindle of machine tool. Eng Fail Anal 128:105597CrossRef Li YF, Zhang YJ, Zhao YQ, Shi XJ (2021) Thermal-mechanical coupling calculation method for deformation error of motorized spindle of machine tool. Eng Fail Anal 128:105597CrossRef
13.
Zurück zum Zitat Liu YC, Li KY, Tsai YC (2021) Spindle thermal error prediction based on LSTM deep learning for a CNC machine tool. Appl Sci 11(12):5444CrossRef Liu YC, Li KY, Tsai YC (2021) Spindle thermal error prediction based on LSTM deep learning for a CNC machine tool. Appl Sci 11(12):5444CrossRef
14.
Zurück zum Zitat Liu PL, Du ZC, Li HM, Deng M, Feng XB, Yang JG (2021) Thermal error modeling based on BiLSTM deep learning for CNC machine tool. Adv Manuf 9(2):235–249CrossRef Liu PL, Du ZC, Li HM, Deng M, Feng XB, Yang JG (2021) Thermal error modeling based on BiLSTM deep learning for CNC machine tool. Adv Manuf 9(2):235–249CrossRef
15.
Zurück zum Zitat Wu CY, Xiang ST, Xiang WS (2021) Spindle thermal error prediction approach based on thermal infrared images: a deep learning method. J Manuf Syst 59:67–80CrossRef Wu CY, Xiang ST, Xiang WS (2021) Spindle thermal error prediction approach based on thermal infrared images: a deep learning method. J Manuf Syst 59:67–80CrossRef
16.
Zurück zum Zitat Zhou HM, Wang Z (2021) Cooling prediction of motorized spindle based on multivariate linear regression. J Phys Conf Ser 1820(1):012196CrossRef Zhou HM, Wang Z (2021) Cooling prediction of motorized spindle based on multivariate linear regression. J Phys Conf Ser 1820(1):012196CrossRef
17.
Zurück zum Zitat Zhu MR, Yang Y, Feng XB, Du ZC, Yang JG (2022) Robust modeling method for thermal error of CNC machine tools based on random forest algorithm. J Intell Manuf 1–14 Zhu MR, Yang Y, Feng XB, Du ZC, Yang JG (2022) Robust modeling method for thermal error of CNC machine tools based on random forest algorithm. J Intell Manuf 1–14
18.
Zurück zum Zitat Liu Y, Wang XF, Zhu XG, Zhai Y (2021) Thermal error prediction of motorized spindle for five-axis machining center based on analytical modeling and BP neural network. J Mech Sci Technol 35(1):281–292CrossRef Liu Y, Wang XF, Zhu XG, Zhai Y (2021) Thermal error prediction of motorized spindle for five-axis machining center based on analytical modeling and BP neural network. J Mech Sci Technol 35(1):281–292CrossRef
19.
Zurück zum Zitat Li ZL, Zhu B, Dai Y, Zhu WM, Wang QH, Wang BD (2021) Research on thermal error modeling of motorized spindle based on BP neural network optimized by beetle antennae search algorithm. Machines 9(11):286CrossRef Li ZL, Zhu B, Dai Y, Zhu WM, Wang QH, Wang BD (2021) Research on thermal error modeling of motorized spindle based on BP neural network optimized by beetle antennae search algorithm. Machines 9(11):286CrossRef
20.
Zurück zum Zitat Guo QJ, Fan S, Xu RF, Cheng X, Zhao GY, Yang JG (2017) Spindle thermal error optimization modeling of a five-axis machine tool. Chin J Mech Eng 30(3):746–753CrossRef Guo QJ, Fan S, Xu RF, Cheng X, Zhao GY, Yang JG (2017) Spindle thermal error optimization modeling of a five-axis machine tool. Chin J Mech Eng 30(3):746–753CrossRef
21.
Zurück zum Zitat Li ZL, Zhu B, Dai Y, Zhu, WM, Wang QH, Wang BD (2022) Thermal error modeling of motorized spindle based on Elman neural network optimized by sparrow search algorithm. Int J Adv Manuf Technol 1–18 Li ZL, Zhu B, Dai Y, Zhu, WM, Wang QH, Wang BD (2022) Thermal error modeling of motorized spindle based on Elman neural network optimized by sparrow search algorithm. Int J Adv Manuf Technol 1–18
22.
Zurück zum Zitat Dai Y, Yin XM, Wei WQ, Wang G, Zhan SQ (2020) Thermal error modeling of high-speed motorized spindle based on ANFIS. Chin J Sci Instrum 41(6):50–58 Dai Y, Yin XM, Wei WQ, Wang G, Zhan SQ (2020) Thermal error modeling of high-speed motorized spindle based on ANFIS. Chin J Sci Instrum 41(6):50–58
23.
Zurück zum Zitat Yue HT, Guo CG, Li Q, Zhao LJ, Hao GB (2020) Thermal error modeling of CNC milling machining spindle based on an adaptive chaos particle swarm optimization algorithm. J Braz Soc Mech Sci Eng 42:1–13CrossRef Yue HT, Guo CG, Li Q, Zhao LJ, Hao GB (2020) Thermal error modeling of CNC milling machining spindle based on an adaptive chaos particle swarm optimization algorithm. J Braz Soc Mech Sci Eng 42:1–13CrossRef
Metadaten
Titel
Thermal error modeling of electric spindle based on particle swarm optimization-SVM neural network
verfasst von
Zhaolong Li
Wenming Zhu
Bo Zhu
Baodong Wang
Qinghai Wang
Publikationsdatum
23.07.2022
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 11-12/2022
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-022-09827-4

Weitere Artikel der Ausgabe 11-12/2022

The International Journal of Advanced Manufacturing Technology 11-12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.