Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 2/2022

17.08.2022 | ORIGINAL ARTICLE

Directed energy deposition process modeling: A geometry-free thermo-mechanical model with adaptive subdomain construction

verfasst von: Dewen Yushu, Michael D. McMurtrey, Wen Jiang, Fande Kong

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work proposes a novel, geometry-free thermo-mechanical model with adaptive subdomain construction to accurately predict the thermal conditions, distortions, and residual stresses throughout the directed energy deposition (DED) process. A novel finite element workflow is designed to conduct the numerical analysis, based on the multi-app and data transfer capabilities in the open-source Multiphysics Object-Oriented Simulation Environment (MOOSE). Unlike with traditional methods, the part geometry in this model is not predefined. Instead, it is a combined effect of the processing parameters and material properties. At each time step, the model utilizes a subdomain construction paradigm to model the material deposition. A specialized mesh adaptivity scheme is incorporated to provide an accurate prediction while reducing the overall computational cost. The results generated by the proposed model show general agreement with the experimental measurements for the single track scan with varying processing parameters and demonstrate reasonable predictions for higher material buildups.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schoinochoritis B, Chantzis D, Salonitis K (2017) Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review. Proc Inst Mech Eng B J Eng Manuf 231(1):96–117CrossRef Schoinochoritis B, Chantzis D, Salonitis K (2017) Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review. Proc Inst Mech Eng B J Eng Manuf 231(1):96–117CrossRef
2.
Zurück zum Zitat Huang Y, Khamesee MB, Toyserkani E (2019) A new physics-based model for laser directed energy deposition (powder-fed additive manufacturing): From single-track to multi-track and multi-layer. Optics & Laser Technology 109:584–599CrossRef Huang Y, Khamesee MB, Toyserkani E (2019) A new physics-based model for laser directed energy deposition (powder-fed additive manufacturing): From single-track to multi-track and multi-layer. Optics & Laser Technology 109:584–599CrossRef
3.
Zurück zum Zitat Grilli N, Hu D, Yushu D, Chen F, Yan W (2022) Crystal plasticity model of residual stress in additive manufacturing using the element elimination and reactivation method. Comput Mech 69(3):825–845MathSciNetCrossRef Grilli N, Hu D, Yushu D, Chen F, Yan W (2022) Crystal plasticity model of residual stress in additive manufacturing using the element elimination and reactivation method. Comput Mech 69(3):825–845MathSciNetCrossRef
4.
Zurück zum Zitat Stender ME, Beghini LL, Sugar JD, Veilleux MG, Subia SR, Smith TR, San Marchi CW, Brown AA, Dagel DJ (2018) A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling. Addit Manuf 21:556–566 Stender ME, Beghini LL, Sugar JD, Veilleux MG, Subia SR, Smith TR, San Marchi CW, Brown AA, Dagel DJ (2018) A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling. Addit Manuf 21:556–566
5.
Zurück zum Zitat Wu AS, Brown DW, Kumar M, Gallegos GF, King WE (2014) An experimental investigation into additive manufacturing-induced residual stresses in 316l stainless steel. Metall and Mater Trans A 45(13):6260–6270CrossRef Wu AS, Brown DW, Kumar M, Gallegos GF, King WE (2014) An experimental investigation into additive manufacturing-induced residual stresses in 316l stainless steel. Metall and Mater Trans A 45(13):6260–6270CrossRef
6.
Zurück zum Zitat Bandyopadhyay A, Traxel KD (2018) Invited review article: Metal-additive manufacturing–modeling strategies for application-optimized designs. Addit Manuf 22:758–774 Bandyopadhyay A, Traxel KD (2018) Invited review article: Metal-additive manufacturing–modeling strategies for application-optimized designs. Addit Manuf 22:758–774
7.
Zurück zum Zitat Hu D, Kovacevic R (2003) Sensing, modeling and control for laser-based additive manufacturing. Int J Mach Tools Manuf 43(1):51–60CrossRef Hu D, Kovacevic R (2003) Sensing, modeling and control for laser-based additive manufacturing. Int J Mach Tools Manuf 43(1):51–60CrossRef
8.
Zurück zum Zitat Beaman J, Bourell DL, Seepersad C, Kovar D (2020) Additive manufacturing review: Early past to current practice. J Manuf Sci Eng 142(11):110812CrossRef Beaman J, Bourell DL, Seepersad C, Kovar D (2020) Additive manufacturing review: Early past to current practice. J Manuf Sci Eng 142(11):110812CrossRef
9.
Zurück zum Zitat Foteinopoulos P, Papacharalampopoulos A, Stavropoulos P (2018) On thermal modeling of additive manufacturing processes. CIRP J Manuf Sci Technol 20:66–83CrossRef Foteinopoulos P, Papacharalampopoulos A, Stavropoulos P (2018) On thermal modeling of additive manufacturing processes. CIRP J Manuf Sci Technol 20:66–83CrossRef
10.
Zurück zum Zitat Ye R, Smugeresky JE, Zheng B, Zhou Y, Lavernia EJ (2006) Numerical modeling of the thermal behavior during the LENS® process. Mater Sci Eng A 428(1–2):47–53CrossRef Ye R, Smugeresky JE, Zheng B, Zhou Y, Lavernia EJ (2006) Numerical modeling of the thermal behavior during the LENS® process. Mater Sci Eng A 428(1–2):47–53CrossRef
11.
Zurück zum Zitat Irwin J, Michaleris P (2016) A line heat input model for additive manufacturing. J Manuf Sci Eng 138(11):111004CrossRef Irwin J, Michaleris P (2016) A line heat input model for additive manufacturing. J Manuf Sci Eng 138(11):111004CrossRef
12.
Zurück zum Zitat Luo Z, Zhao Y (2019) Numerical simulation of part-level temperature fields during selective laser melting of stainless steel 316l. Int J Adv Manuf Technol 104(5):1615–1635CrossRef Luo Z, Zhao Y (2019) Numerical simulation of part-level temperature fields during selective laser melting of stainless steel 316l. Int J Adv Manuf Technol 104(5):1615–1635CrossRef
13.
Zurück zum Zitat Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372CrossRef Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372CrossRef
14.
Zurück zum Zitat Yang Q, Zhang P, Cheng L, Min Z, Chyu M, To AC (2016) Finite element modeling and validation of thermomechanical behavior of ti-6al-4v in directed energy deposition additive manufacturing. Addit Manuf 12:169–177 Yang Q, Zhang P, Cheng L, Min Z, Chyu M, To AC (2016) Finite element modeling and validation of thermomechanical behavior of ti-6al-4v in directed energy deposition additive manufacturing. Addit Manuf 12:169–177
15.
Zurück zum Zitat Ghosh S, Choi J (2005) Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process. J Laser Appl 17(3):144–158CrossRef Ghosh S, Choi J (2005) Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process. J Laser Appl 17(3):144–158CrossRef
16.
Zurück zum Zitat Heigel J, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of ti-6al-4v. Addit Manuf 5:9–19 Heigel J, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of ti-6al-4v. Addit Manuf 5:9–19
17.
Zurück zum Zitat Michaleris P (2014) Modeling metal deposition in heat transfer analyses of additive manufacturing processes. Finite Elem Anal Des 86:51–60CrossRef Michaleris P (2014) Modeling metal deposition in heat transfer analyses of additive manufacturing processes. Finite Elem Anal Des 86:51–60CrossRef
18.
Zurück zum Zitat Denlinger ER, Gouge M, Irwin J, Michaleris P (2017) Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process. Addit Manuf 16:73–80 Denlinger ER, Gouge M, Irwin J, Michaleris P (2017) Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process. Addit Manuf 16:73–80
19.
Zurück zum Zitat Ding J, Colegrove P, Mehnen J, Williams S, Wang F, Almeida PS (2014) A computationally efficient finite element model of wire and arc additive manufacture. Int J Adv Manuf Technol 70(1–4):227–236CrossRef Ding J, Colegrove P, Mehnen J, Williams S, Wang F, Almeida PS (2014) A computationally efficient finite element model of wire and arc additive manufacture. Int J Adv Manuf Technol 70(1–4):227–236CrossRef
20.
Zurück zum Zitat Li C, Fu C, Guo Y, Fang F (2016) A multiscale modeling approach for fast prediction of part distortion in selective laser melting. J Mater Process Technol 229:703–712CrossRef Li C, Fu C, Guo Y, Fang F (2016) A multiscale modeling approach for fast prediction of part distortion in selective laser melting. J Mater Process Technol 229:703–712CrossRef
21.
Zurück zum Zitat Prabhakar P, Sames WJ, Dehoff R, Babu SS (2015) Computational modeling of residual stress formation during the electron beam melting process for inconel 718. Addit Manuf 7:83–91 Prabhakar P, Sames WJ, Dehoff R, Babu SS (2015) Computational modeling of residual stress formation during the electron beam melting process for inconel 718. Addit Manuf 7:83–91
23.
Zurück zum Zitat Permann CJ, Gaston DR, Andrš D, Carlsen RW, Kong F, Lindsay AD, Miller JM, Peterson JW, Slaughter AE, Stogner RH et al (2020) MOOSE: Enabling massively parallel multiphysics simulation. SoftwareX 11:100430CrossRef Permann CJ, Gaston DR, Andrš D, Carlsen RW, Kong F, Lindsay AD, Miller JM, Peterson JW, Slaughter AE, Stogner RH et al (2020) MOOSE: Enabling massively parallel multiphysics simulation. SoftwareX 11:100430CrossRef
Metadaten
Titel
Directed energy deposition process modeling: A geometry-free thermo-mechanical model with adaptive subdomain construction
verfasst von
Dewen Yushu
Michael D. McMurtrey
Wen Jiang
Fande Kong
Publikationsdatum
17.08.2022
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 2/2022
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-022-09887-6

Weitere Artikel der Ausgabe 2/2022

The International Journal of Advanced Manufacturing Technology 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.