Skip to main content

26.01.2023 | ORIGINAL ARTICLE

Lie group dee learning technique to identify the precision errors by map geometry functions in smart manufacturing

verfasst von: Renu Kachhoria, Swati Jaiswal, Smita Khairnar, Kanan Rajeswari, Shailaja Pede, Reena Kharat, Shailesh Galande, Chetan Khadse

Erschienen in: The International Journal of Advanced Manufacturing Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Numerous technical disciplines examine the information with a non-Euclidean dimension as its fundamental structural basis. This geometrical information is common in several industries, generally huge and complicated (in virtual groups, also on order to billions). Therefore, they are prime candidates for using artificial intelligence methods. We will employ deeper neuro systems since they are effective solutions for various issues in manufacturing industries, including accurate measurements, precision enabling, and predictive maintenance. Furthermore, the datasets having an inherent Euclidean but a rather grid-like pattern, as well as situations at which invariances of such patterns get integrated into systems employed for simulating those, demonstrate the greatest performance for these methods. The application of AI for smart manufacturing is evolving as algorithms are matured. Modern techniques often superficially discover advantageous Lie grouping characteristics before first representing every action series mostly as a high-dimensional path upon the Lie grouping, including an added crucial moment distortion that causes low accuracy. In this article, we acquire highly suitable Lie grouping characteristics that enable 3D motion identification by integrating the Lie grouping topology into a deeper networking design. We create rotational translating levels inside this networking topology that change the undesirable inputs of the manufacturing parameters with Lie grouping characteristics into those that seem closely correlated as in the timing realm. The group structure has rotating dumping levels for such components, upon which the Lie subgroup helps lower the excessive characteristic dimensions. Therefore, to effectively use normal output levels for such eventual categorization of precision errors, we also suggest a log translation level that transfers the generated multi-dimensional information into contour lines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
2.
Zurück zum Zitat Mikolov T, Deoras A, Povey D, Burget L, and Černocký J (2011) Strategies for training large scale neural network language models. In: 2011 IEEE workshop on automatic speech recognition & understanding, Waikoloa, HI, USA, 2011, p 196–201, https://doi.org/10.1109/ASRU.2011.6163930 Mikolov T, Deoras A, Povey D, Burget L, and Černocký J (2011) Strategies for training large scale neural network language models. In: 2011 IEEE workshop on automatic speech recognition & understanding, Waikoloa, HI, USA, 2011, p 196–201, https://​doi.​org/​10.​1109/​ASRU.​2011.​6163930
3.
Zurück zum Zitat Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig Proc Magazine 29(6):82–97CrossRef Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig Proc Magazine 29(6):82–97CrossRef
4.
Zurück zum Zitat Sutskever I, Vinyals O and Le Quoc V (2014) Sequence to sequence learning with neural networks. In: Proceedings of the Conference on Advances in Neural Information Processing Systems, p. 3104–3112 Sutskever I, Vinyals O and Le Quoc V (2014) Sequence to sequence learning with neural networks. In: Proceedings of the Conference on Advances in Neural Information Processing Systems, p. 3104–3112
7.
Zurück zum Zitat Krizhevsky A, Sutskever I, & Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, & Weinberger KQ (eds) Advances in neural information processing systems 25, Curran Associates, Inc, p 1097–1105 Krizhevsky A, Sutskever I, & Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, & Weinberger KQ (eds) Advances in neural information processing systems 25, Curran Associates, Inc, p 1097–1105
8.
Zurück zum Zitat Farabet C, Couprie C, Najman L, LeCun Y (2013) Learning hierarchical features for scene labeling. Trans PAMI 35(8):1915–1929CrossRef Farabet C, Couprie C, Najman L, LeCun Y (2013) Learning hierarchical features for scene labeling. Trans PAMI 35(8):1915–1929CrossRef
9.
Zurück zum Zitat Taigman Y, Yang M, Ranzato M and Wolf L (2014) Deep face: closing the gap to human-level performance in face verification. In: 2014 IEEE conference on computer vision and pattern recognition, Columbus, OH, USA, 2014, p 1701–1708, https://doi.org/10.1109/CVPR.2014.220 Taigman Y, Yang M, Ranzato M and Wolf L (2014) Deep face: closing the gap to human-level performance in face verification. In: 2014 IEEE conference on computer vision and pattern recognition, Columbus, OH, USA, 2014, p 1701–1708, https://​doi.​org/​10.​1109/​CVPR.​2014.​220
10.
Zurück zum Zitat Simonyan K and Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 Simonyan K and Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556
12.
Zurück zum Zitat Deng L, Yu D (2014) Deep learning: methods and applications. Found Trends Signal Process 7(3–4):197–387CrossRefMATH Deng L, Yu D (2014) Deep learning: methods and applications. Found Trends Signal Process 7(3–4):197–387CrossRefMATH
13.
Zurück zum Zitat Goodfellow Y (2016) Bengio, and A. Deep learning. MIT Press, Courville (in preparation) Goodfellow Y (2016) Bengio, and A. Deep learning. MIT Press, Courville (in preparation)
14.
Zurück zum Zitat Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24(1):1193–1216CrossRef Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24(1):1193–1216CrossRef
15.
Zurück zum Zitat Field DJ (1989) What the statistics of natural images tell us about visual coding. Photonics West-Lasers and Applications in Science and Engineering Field DJ (1989) What the statistics of natural images tell us about visual coding. Photonics West-Lasers and Applications in Science and Engineering
17.
18.
Zurück zum Zitat Bruna J, Mallat S (2013) Invariant scattering convolution networks. Trans PAMI 35(8):1872–1886CrossRef Bruna J, Mallat S (2013) Invariant scattering convolution networks. Trans PAMI 35(8):1872–1886CrossRef
19.
Zurück zum Zitat Tygert M, Bruna J, Chintala S, LeCun Y, Piantino S and Szlam A (2016) A mathematical motivation for complex-valued convolutional networks. Neural Comput 28:815–825 Tygert M, Bruna J, Chintala S, LeCun Y, Piantino S and Szlam A (2016) A mathematical motivation for complex-valued convolutional networks. Neural Comput 28:815–825
20.
Zurück zum Zitat Goodfellow I, Warde-Farley D, Mirza M, Courville A, & Bengio Y (2013) Maxout networks. In: Proceedings of the 30th international conference on machine learning, in proceedings of machine learning research, 28(3):1319–1327 Goodfellow I, Warde-Farley D, Mirza M, Courville A, & Bengio Y (2013) Maxout networks. In: Proceedings of the 30th international conference on machine learning, in proceedings of machine learning research, 28(3):1319–1327
21.
Zurück zum Zitat Vemulapalli R and Chellappa R (2016) Rolling rotations for recognizing human actions from 3D skeletal data. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, p 4471–4479, https://doi.org/10.1109/CVPR.2016.484 Vemulapalli R and Chellappa R (2016) Rolling rotations for recognizing human actions from 3D skeletal data. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, p 4471–4479, https://​doi.​org/​10.​1109/​CVPR.​2016.​484
23.
Zurück zum Zitat Vemulapalli R, Arrate F and Chellappa R (2014) Human action recognition by representing 3D skeletons as points in a Lie group. In: 2014 IEEE conference on computer vision and pattern recognition, Columbus, OH, USA, 2014, p 588–595, https://doi.org/10.1109/CVPR.2014.82 Vemulapalli R, Arrate F and Chellappa R (2014) Human action recognition by representing 3D skeletons as points in a Lie group. In: 2014 IEEE conference on computer vision and pattern recognition, Columbus, OH, USA, 2014, p 588–595, https://​doi.​org/​10.​1109/​CVPR.​2014.​82
24.
Zurück zum Zitat Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396CrossRefMATH Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396CrossRefMATH
25.
Zurück zum Zitat Albertini F and Sontag ED (1992) For neural networks, function determines form. In Decision and Control, Proceedings of the 31st IEEE Conference on, pages 26–31. IEEE, 1992 Albertini F and Sontag ED (1992) For neural networks, function determines form. In Decision and Control, Proceedings of the 31st IEEE Conference on, pages 26–31. IEEE, 1992
27.
Zurück zum Zitat Fiori S (2002) Unsupervised neural learning on Lie group. Int J Neur Syst 12(03n04):219–246CrossRef Fiori S (2002) Unsupervised neural learning on Lie group. Int J Neur Syst 12(03n04):219–246CrossRef
28.
Zurück zum Zitat Ganesh Babu R, Markkandan S, Vinotha V, Priyadarshini S, Kaviya V (2023) IoT security using machine learning techniques. In: Maurya, S., Peddoju, S.K., Ahmad, B., Chihi, I. (eds) Cyber Technologies and Emerging Sciences. Lecture Notes in Networks and Systems, vol 467. Springer, Singapore. https://doi.org/10.1007/978-981-19-2538-2_37 Ganesh Babu R, Markkandan S, Vinotha V, Priyadarshini S, Kaviya V (2023) IoT security using machine learning techniques. In: Maurya, S., Peddoju, S.K., Ahmad, B., Chihi, I. (eds) Cyber Technologies and Emerging Sciences. Lecture Notes in Networks and Systems, vol 467. Springer, Singapore. https://​doi.​org/​10.​1007/​978-981-19-2538-2_​37
29.
Zurück zum Zitat Moreau Y and Vandewalle J (1996) A Lie algebraic approach to dynamical system prediction. In Circuits and Systems, 1996. ISCAS'96., Connecting the World., 1996 IEEE International Symposium on, volume 3, pages 182–185. IEEE Moreau Y and Vandewalle J (1996) A Lie algebraic approach to dynamical system prediction. In Circuits and Systems, 1996. ISCAS'96., Connecting the World., 1996 IEEE International Symposium on, volume 3, pages 182–185. IEEE
30.
Zurück zum Zitat Pearson DW (1995) Changing network weights by Lie groups. In Artificial Neural Nets and Genetic Algorithms, pages 249– 252. Springer Pearson DW (1995) Changing network weights by Lie groups. In Artificial Neural Nets and Genetic Algorithms, pages 249– 252. Springer
31.
Zurück zum Zitat Boscaini D, Masci J, Melzi S, Bronstein M, Castellani U and Vandergheynst P (2015) Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. In Computer Graphics Forum, volume 34, pages 13–23. Wiley Online Library Boscaini D, Masci J, Melzi S, Bronstein M, Castellani U and Vandergheynst P (2015) Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. In Computer Graphics Forum, volume 34, pages 13–23. Wiley Online Library
32.
Zurück zum Zitat Bruna J, Zaremba W, Szlam AD, & LeCun Y (2013) Spectral networks and locally connected networks on graphs. CoRR, abs/1312.6203 Bruna J, Zaremba W, Szlam AD, & LeCun Y (2013) Spectral networks and locally connected networks on graphs. CoRR, abs/1312.6203
33.
Zurück zum Zitat Maaten L, Hinton G (2008) Visualizing data using t-SNE. JMLR 9:2579–2605MATH Maaten L, Hinton G (2008) Visualizing data using t-SNE. JMLR 9:2579–2605MATH
34.
Zurück zum Zitat Cao S, Lu W, & Xu Q (2015) GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM international on conference on information and knowledge management Cao S, Lu W, & Xu Q (2015) GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM international on conference on information and knowledge management
35.
Zurück zum Zitat Mikolov T, Chen K, Corrado G and Dean J (2013) Efficient estimation of word representations in vector space. International Conference on Learning Representations Mikolov T, Chen K, Corrado G and Dean J (2013) Efficient estimation of word representations in vector space. International Conference on Learning Representations
36.
Zurück zum Zitat Litman R, Bronstein AM (2014) Learning spectral descriptors for deformable shape correspondence. Trans PAMI 36(1):171–180CrossRef Litman R, Bronstein AM (2014) Learning spectral descriptors for deformable shape correspondence. Trans PAMI 36(1):171–180CrossRef
37.
Zurück zum Zitat Fortunato S (2010) Community detection in graphs. Phys Rep 486(3):75–174CrossRef Fortunato S (2010) Community detection in graphs. Phys Rep 486(3):75–174CrossRef
38.
Zurück zum Zitat Zhang Z, Zhang Z, Jin X et al (2018) A novel modelling method of geometric errors for precision assembly. Int J Adv Manuf Technol 94:1139–1160CrossRef Zhang Z, Zhang Z, Jin X et al (2018) A novel modelling method of geometric errors for precision assembly. Int J Adv Manuf Technol 94:1139–1160CrossRef
Metadaten
Titel
Lie group dee learning technique to identify the precision errors by map geometry functions in smart manufacturing
verfasst von
Renu Kachhoria
Swati Jaiswal
Smita Khairnar
Kanan Rajeswari
Shailaja Pede
Reena Kharat
Shailesh Galande
Chetan Khadse
Publikationsdatum
26.01.2023
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-023-10834-2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.