Skip to main content
Erschienen in: Electrical Engineering 3/2018

14.12.2017 | Original Paper

Using of four-switch three-phase converter in the structure DPC of DFIG under unbalanced grid voltage condition

verfasst von: Ali Izanlo, S. Asghar Gholamian, Mohammad Verij Kazemi

Erschienen in: Electrical Engineering | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a novel direct power control (DPC) strategy for doubly fed induction generator (DFIG) drives fed by a four-switch three-phase converters (FSTPCs). In this method, two FSTPCs in rotor and grid side have been used instead of two six-switch three-phase converters (SSTPC). Reduction in the number of active switches will lead to improvement in reliability, reduction in costs and less conduction losses. The FSTPC will generate four unbalanced voltage vectors. A strategy used in order to balance these four voltage vectors. The introduced strategy is based on the emulation of the operation of the conventional SSTPC. In this method, four unbalanced voltage vectors that were generated by FSTPC somehow combined together which produced six balanced voltage vectors of the SSTPC. Then, the new switching table is written for new DPC method for DFIG. Also, during the unbalanced grid voltage condition, three selectable targets are provided for compensating active and reactive power, electromagnetic torque and stator current. These targets are added to power references and are caused decreasing the active and reactive power ripples, mitigation electromagnetic torque pulsations and sinusoidal and balanced stator currents. In the end, an economic comparison between two FSTPC and SSTPC is done. Also, the novel DPC method, i.e., use of FSTPC in rotor and grid side, is compared with prior DPC method, i.e., use of SSTPC in rotor and grid side, and its effectiveness is confirmed by simulation results from a 1-MW DFIG system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Muller S, Deicke M, De Doncker RW (2002) Doubly fed induction generator systems for wind turbines. IEEE Ind Appl Magaz 8:26–33CrossRef Muller S, Deicke M, De Doncker RW (2002) Doubly fed induction generator systems for wind turbines. IEEE Ind Appl Magaz 8:26–33CrossRef
2.
Zurück zum Zitat Pena R, Clare JC, Asher GM (1996) Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proce Electr Power Appl 143(3):231–241CrossRef Pena R, Clare JC, Asher GM (1996) Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proce Electr Power Appl 143(3):231–241CrossRef
3.
Zurück zum Zitat Akagi H, Sato H (2002) Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Trans Power Electron 17(1):109–116CrossRef Akagi H, Sato H (2002) Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Trans Power Electron 17(1):109–116CrossRef
4.
Zurück zum Zitat Arnalte S, Burgos J, Rodriguez-Amenedo J (2002) Direct torque control of a doubly-fed induction generator for variable speed wind turbines. Electr Power Compon Syst 30(2):199–216CrossRef Arnalte S, Burgos J, Rodriguez-Amenedo J (2002) Direct torque control of a doubly-fed induction generator for variable speed wind turbines. Electr Power Compon Syst 30(2):199–216CrossRef
5.
Zurück zum Zitat Xu L, Cartwright P (2006) Direct active and reactive power control of DFIG for wind energy generation. IEEE Trans Energy Conv 21(3):750CrossRef Xu L, Cartwright P (2006) Direct active and reactive power control of DFIG for wind energy generation. IEEE Trans Energy Conv 21(3):750CrossRef
6.
Zurück zum Zitat Zhi D, Xu L (2007) Direct power control of DFIG with constant switching frequency and improved transient performance. IEEE Trans Energy Conv 22(1):110CrossRef Zhi D, Xu L (2007) Direct power control of DFIG with constant switching frequency and improved transient performance. IEEE Trans Energy Conv 22(1):110CrossRef
7.
Zurück zum Zitat Kalamian N, Kazemi MV, Gholamian SA (2016) Direct power control of DFIG by using nonlinear model predictive controller. Asian J Control 18(4):1–15MathSciNet Kalamian N, Kazemi MV, Gholamian SA (2016) Direct power control of DFIG by using nonlinear model predictive controller. Asian J Control 18(4):1–15MathSciNet
8.
Zurück zum Zitat Kazemi MV, Yazdankhah AS, Kojabadi HM (2010) Direct power control of DFIG based on discrete space vector modulation. Renew Energy 35(5):1033–1042CrossRef Kazemi MV, Yazdankhah AS, Kojabadi HM (2010) Direct power control of DFIG based on discrete space vector modulation. Renew Energy 35(5):1033–1042CrossRef
9.
Zurück zum Zitat Kazemi MV, Moradi M, Verij Kazemi R (2012) Minimization of powers ripple of direct power controlled DFIG by fuzzy controller and improved discrete space vector modulation. Int J Electr Power Syst Res 89(5):23–30CrossRef Kazemi MV, Moradi M, Verij Kazemi R (2012) Minimization of powers ripple of direct power controlled DFIG by fuzzy controller and improved discrete space vector modulation. Int J Electr Power Syst Res 89(5):23–30CrossRef
10.
Zurück zum Zitat Singh Bhim, Swami Naidu NK (2014) Direct power control of single VSC based DFIG without rotor position sensor. IEEE Trans Ind Appl 50(6):4152–4163CrossRef Singh Bhim, Swami Naidu NK (2014) Direct power control of single VSC based DFIG without rotor position sensor. IEEE Trans Ind Appl 50(6):4152–4163CrossRef
11.
Zurück zum Zitat Cheng P, Nian H (2015) Collaborative control of DFIG system during network unbalance using reduced-order generalized integrators. IEEE Trans Energy Convers 30(2):453–464CrossRef Cheng P, Nian H (2015) Collaborative control of DFIG system during network unbalance using reduced-order generalized integrators. IEEE Trans Energy Convers 30(2):453–464CrossRef
12.
Zurück zum Zitat Abad G, Rodriguez MA, Iwanski G, Poza J (2010) Direct power control of doubly-fed-induction-generator-based wind turbine under unbalanced grid voltage. IEEE Trans Power Electron 25(2):442CrossRef Abad G, Rodriguez MA, Iwanski G, Poza J (2010) Direct power control of doubly-fed-induction-generator-based wind turbine under unbalanced grid voltage. IEEE Trans Power Electron 25(2):442CrossRef
13.
Zurück zum Zitat Nian Heng, Cheng Peng, Zhu ZQ (2016) Coordinated direct power control of DFIG system without locked loop under unbalanced grid voltage conditions. IEEE Trans Power Electron 31(4):2905–2918CrossRef Nian Heng, Cheng Peng, Zhu ZQ (2016) Coordinated direct power control of DFIG system without locked loop under unbalanced grid voltage conditions. IEEE Trans Power Electron 31(4):2905–2918CrossRef
14.
Zurück zum Zitat Jiefeng Hu, Zhu Jianguo, Dorrell David G (2015) Predictive direct power control of doubly fed induction generators under unbalanced grid voltage conditions for power quality improvement. IEEE Trans Sustain Energy 6(3):943–950CrossRef Jiefeng Hu, Zhu Jianguo, Dorrell David G (2015) Predictive direct power control of doubly fed induction generators under unbalanced grid voltage conditions for power quality improvement. IEEE Trans Sustain Energy 6(3):943–950CrossRef
15.
Zurück zum Zitat Noguchi T, Tomiki H, Kondo S, Takahashi I (1998) Direct power control of PWM converter without power-source voltage sensors. IEEE Trans Ind Appl 34(3):473CrossRef Noguchi T, Tomiki H, Kondo S, Takahashi I (1998) Direct power control of PWM converter without power-source voltage sensors. IEEE Trans Ind Appl 34(3):473CrossRef
16.
Zurück zum Zitat Uddin MN, Radwan TS, Rahman MA (2006) Performance analysis of a cost effective 4-switch 3-phase inverter fed IM drive. Iran J Electr Comput Eng 5(2):97 Uddin MN, Radwan TS, Rahman MA (2006) Performance analysis of a cost effective 4-switch 3-phase inverter fed IM drive. Iran J Electr Comput Eng 5(2):97
17.
Zurück zum Zitat Krishnaveni V, Kiruthika K, Sathish Kumar S (2014) Design and implementation of low cost four switch inverter for BLDC motor drive with active power factor correction. In: International conference on green computing communication and electrical engineering (ICGCCEE), Coimbatore Krishnaveni V, Kiruthika K, Sathish Kumar S (2014) Design and implementation of low cost four switch inverter for BLDC motor drive with active power factor correction. In: International conference on green computing communication and electrical engineering (ICGCCEE), Coimbatore
18.
Zurück zum Zitat Blaabjerg F, Freysson S, Hansen H-H, Hansen S (1997) A new optimized space vector modulation strategy for a component minimized voltage source inverter. IEEE Trans Power Electron 12(4):704CrossRef Blaabjerg F, Freysson S, Hansen H-H, Hansen S (1997) A new optimized space vector modulation strategy for a component minimized voltage source inverter. IEEE Trans Power Electron 12(4):704CrossRef
19.
Zurück zum Zitat Monfared M, Rastegar H, Kojabadi HM (2008) Overview of modulation techniques for the four-switch converter topology. In: 2nd IEEE international conference on power and energy (PECon 08), Johor Baharu, Malaysia Monfared M, Rastegar H, Kojabadi HM (2008) Overview of modulation techniques for the four-switch converter topology. In: 2nd IEEE international conference on power and energy (PECon 08), Johor Baharu, Malaysia
20.
Zurück zum Zitat Bhadauria Y, Patel AN, Patel V, Patel J (2012) Simulation and analysis of three phase voltage source inverter using four semiconductor switches. In: Nirma University international conference on engineering, NUiCONE-2012 Bhadauria Y, Patel AN, Patel V, Patel J (2012) Simulation and analysis of three phase voltage source inverter using four semiconductor switches. In: Nirma University international conference on engineering, NUiCONE-2012
21.
Zurück zum Zitat Arifujjaman Md, Iqbal MT, Quaicoe JE (2009) Reliability analysis of grid connected small wind turbines power electronics. Appl Energy 86(9):1617–1623CrossRef Arifujjaman Md, Iqbal MT, Quaicoe JE (2009) Reliability analysis of grid connected small wind turbines power electronics. Appl Energy 86(9):1617–1623CrossRef
22.
Zurück zum Zitat Najafi P, Rajaei A, Mohamadian M, Varjani AY (2014) Design considerations of Vienna rectifier-B4 converter for wind energy application. In: PEDSTC, Tehran, Iran Najafi P, Rajaei A, Mohamadian M, Varjani AY (2014) Design considerations of Vienna rectifier-B4 converter for wind energy application. In: PEDSTC, Tehran, Iran
Metadaten
Titel
Using of four-switch three-phase converter in the structure DPC of DFIG under unbalanced grid voltage condition
verfasst von
Ali Izanlo
S. Asghar Gholamian
Mohammad Verij Kazemi
Publikationsdatum
14.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 3/2018
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-017-0671-7

Weitere Artikel der Ausgabe 3/2018

Electrical Engineering 3/2018 Zur Ausgabe