Skip to main content
Erschienen in: Electrical Engineering 3/2020

02.03.2020 | Original Paper

A hybrid transfer learning model for short-term electric load forecasting

verfasst von: Xianze Xu, Zhaorui Meng

Erschienen in: Electrical Engineering | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transfer learning approach can be applied to electric load forecasting because electric load data from nearby locations are significantly correlated. However, ordinary transfer learning methods may bring negative transfer into load forecasting as time series prediction is not exactly the same as traditional data regression problem. Consequently, this paper proposes a novel hybrid transfer learning model based on time series decomposition. Firstly, trend and seasonal components are handled by standard machine learning approach so that seasonal cycles of electric load data can be interpreted better. Secondly, two-stage transfer regression model is established to forecast the irregular component in order to improve the forecasting accuracy. The negative transfer is successfully avoided, and the prediction accuracies are significantly improved because of time series decomposing and the additional information provided by the related dataset. The case study presented by two real-world power load datasets illustrates that the proposed approach can improve electric load prediction for a location by 30% at most by using additional data from another location.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Janacek G (2010) Time series analysis forecasting and control. J Time Ser Anal 31(4):303 Janacek G (2010) Time series analysis forecasting and control. J Time Ser Anal 31(4):303
2.
Zurück zum Zitat Mohamed Norizan, Ahmad MH, Ismail Z (2011) Improving short term load forecasting using double seasonal arima model. World Appl Sci J 13(1):27–35 Mohamed Norizan, Ahmad MH, Ismail Z (2011) Improving short term load forecasting using double seasonal arima model. World Appl Sci J 13(1):27–35
3.
Zurück zum Zitat Liu N, Babushkin V, Afshari A (2014) Short-term forecasting of temperature driven electricity load using time series and neural network model. J Clean Energy Technol 2(4):327–331CrossRef Liu N, Babushkin V, Afshari A (2014) Short-term forecasting of temperature driven electricity load using time series and neural network model. J Clean Energy Technol 2(4):327–331CrossRef
4.
Zurück zum Zitat Bercu S, Proïa F (2013) A sarimax coupled modelling applied to individual load curves intraday forecasting. J Appl Stat 40(6):1333–1348MathSciNetCrossRef Bercu S, Proïa F (2013) A sarimax coupled modelling applied to individual load curves intraday forecasting. J Appl Stat 40(6):1333–1348MathSciNetCrossRef
5.
Zurück zum Zitat Ben Taieb S, Hyndman RJ (2014) A gradient boosting approach to the kaggle load forecasting competition. Int J Forecast 30(2):382–394CrossRef Ben Taieb S, Hyndman RJ (2014) A gradient boosting approach to the kaggle load forecasting competition. Int J Forecast 30(2):382–394CrossRef
6.
Zurück zum Zitat Niu D, Wang Y, Wu DD (2010) Power load forecasting using support vector machine and ant colony optimization. Expert Syst Appl 37(3):2531–2539CrossRef Niu D, Wang Y, Wu DD (2010) Power load forecasting using support vector machine and ant colony optimization. Expert Syst Appl 37(3):2531–2539CrossRef
7.
Zurück zum Zitat Shi Z, Li Y, Yu T (2009) Short-term load forecasting based on LS-SVM optimized by bacterial colony chemotaxis algorithm. In: International conference on information and multimedia technology, pp 306–309 Shi Z, Li Y, Yu T (2009) Short-term load forecasting based on LS-SVM optimized by bacterial colony chemotaxis algorithm. In: International conference on information and multimedia technology, pp 306–309
8.
Zurück zum Zitat Avami A, Boroushaki M (2011) Energy consumption forecasting of Iran using recurrent neural networks. Energy Sources Part B 6(4):339–347CrossRef Avami A, Boroushaki M (2011) Energy consumption forecasting of Iran using recurrent neural networks. Energy Sources Part B 6(4):339–347CrossRef
9.
Zurück zum Zitat Neupane B, Perera K, Aung Z, Woon W (2012) Artificial neural network-based electricity price forecasting for smart grid deployment. In: Proceedings of the 2012 IEEE international conference on computer systems and industrial informatics (ICCSII12). pp 1–6 Neupane B, Perera K, Aung Z, Woon W (2012) Artificial neural network-based electricity price forecasting for smart grid deployment. In: Proceedings of the 2012 IEEE international conference on computer systems and industrial informatics (ICCSII12). pp 1–6
10.
Zurück zum Zitat Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359CrossRef Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359CrossRef
11.
Zurück zum Zitat Li W, Duan L, Xu D, Tsang IW (2014) Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. IEEE Trans Pattern Anal Mach Intell 36(6):1134–1148CrossRef Li W, Duan L, Xu D, Tsang IW (2014) Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. IEEE Trans Pattern Anal Mach Intell 36(6):1134–1148CrossRef
12.
Zurück zum Zitat Hosseinzadeh H, Razzazi F, Kabir E (2016) A weakly supervised large margin domain adaptation method for isolated handwritten digit recognition. J Vis Commun Image Represent 38:307–315CrossRef Hosseinzadeh H, Razzazi F, Kabir E (2016) A weakly supervised large margin domain adaptation method for isolated handwritten digit recognition. J Vis Commun Image Represent 38:307–315CrossRef
13.
Zurück zum Zitat Mozafari AS, Jamzad M (2016) A SVM-based model-transferring method for heterogeneous domain adaptation. Pattern Recogn 56:142–158CrossRef Mozafari AS, Jamzad M (2016) A SVM-based model-transferring method for heterogeneous domain adaptation. Pattern Recogn 56:142–158CrossRef
14.
Zurück zum Zitat Hu X, Pan J, Li P, Li H, He W, Zhang Y (2016) Multi-bridge transfer learning. Knowl Based Syst 97:60–74CrossRef Hu X, Pan J, Li P, Li H, He W, Zhang Y (2016) Multi-bridge transfer learning. Knowl Based Syst 97:60–74CrossRef
15.
Zurück zum Zitat Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210CrossRef Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210CrossRef
16.
Zurück zum Zitat Cortes C, Mohri M (2014) Domain adaptation and sample bias correction theory and algorithm for regression. Theoret Comput Sci 519:103–126MathSciNetMATHCrossRef Cortes C, Mohri M (2014) Domain adaptation and sample bias correction theory and algorithm for regression. Theoret Comput Sci 519:103–126MathSciNetMATHCrossRef
17.
Zurück zum Zitat Ma Y, Luo G, Zeng X, Chen A (2012) Transfer learning for cross-company software defect prediction. Inf Softw Technol 54(3):248–256CrossRef Ma Y, Luo G, Zeng X, Chen A (2012) Transfer learning for cross-company software defect prediction. Inf Softw Technol 54(3):248–256CrossRef
18.
Zurück zum Zitat Nam J, Pan SJ, Kim S (2013) Transfer defect learning. In: Proceedings of the 2013 international conference on software engineering. IEEE Press, San Francisco, pp 382–391 Nam J, Pan SJ, Kim S (2013) Transfer defect learning. In: Proceedings of the 2013 international conference on software engineering. IEEE Press, San Francisco, pp 382–391
19.
Zurück zum Zitat Mocanu E, Nguyen PH, Kling WL, Gibescu M (2016) Unsupervised energy prediction in a smart grid context using reinforcement cross-building transfer learning. Energy Build 116:646–655CrossRef Mocanu E, Nguyen PH, Kling WL, Gibescu M (2016) Unsupervised energy prediction in a smart grid context using reinforcement cross-building transfer learning. Energy Build 116:646–655CrossRef
20.
Zurück zum Zitat Zhang Y, Guiming L (2015) Short term power load prediction with knowledge transfer. Inf Syst 53:161–169CrossRef Zhang Y, Guiming L (2015) Short term power load prediction with knowledge transfer. Inf Syst 53:161–169CrossRef
21.
Zurück zum Zitat Wu D et al (2017) Boosting based multiple kernel learning and transfer regression for electricity load forecasting. In: European conference on machine learning, pp 39–51 Wu D et al (2017) Boosting based multiple kernel learning and transfer regression for electricity load forecasting. In: European conference on machine learning, pp 39–51
22.
Zurück zum Zitat Fiot Jeanbaptiste, Dinuzzo Francesco (2018) Electricity demand forecasting by multi-task learning. IEEE Trans Smart Grid 9(2):544–551CrossRef Fiot Jeanbaptiste, Dinuzzo Francesco (2018) Electricity demand forecasting by multi-task learning. IEEE Trans Smart Grid 9(2):544–551CrossRef
23.
Zurück zum Zitat Zhang Y, Luo G, Pu F (2014) Power load forecasting based on multi-task gaussian process. In: Proceedings of the IFAC 19th world congress, pp 3651–3656 Zhang Y, Luo G, Pu F (2014) Power load forecasting based on multi-task gaussian process. In: Proceedings of the IFAC 19th world congress, pp 3651–3656
24.
Zurück zum Zitat Che JX (2014) A novel hybrid model for bi-objective short-term electric load forecasting. Int J Electr Power Energy Syst 61:259–266CrossRef Che JX (2014) A novel hybrid model for bi-objective short-term electric load forecasting. Int J Electr Power Energy Syst 61:259–266CrossRef
25.
Zurück zum Zitat Ren Y, Suganthan PN, Srikanth N (2016) A novel empirical mode decomposition with support vector regression for wind speed forecasting. IEEE Trans Neural Netw Learn Syst 27(8):1793–1798MathSciNetCrossRef Ren Y, Suganthan PN, Srikanth N (2016) A novel empirical mode decomposition with support vector regression for wind speed forecasting. IEEE Trans Neural Netw Learn Syst 27(8):1793–1798MathSciNetCrossRef
26.
Zurück zum Zitat Ribeiro M et al (2018) Transfer learning with seasonal and trend adjustment for cross-building energy forecasting. Energy Build 165:352–363CrossRef Ribeiro M et al (2018) Transfer learning with seasonal and trend adjustment for cross-building energy forecasting. Energy Build 165:352–363CrossRef
27.
Zurück zum Zitat Pardoe D, Stone P (2010) Boosting for regression transfer. In: International conference on machine learning. pp 863–870 Pardoe D, Stone P (2010) Boosting for regression transfer. In: International conference on machine learning. pp 863–870
Metadaten
Titel
A hybrid transfer learning model for short-term electric load forecasting
verfasst von
Xianze Xu
Zhaorui Meng
Publikationsdatum
02.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 3/2020
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-020-00930-x

Weitere Artikel der Ausgabe 3/2020

Electrical Engineering 3/2020 Zur Ausgabe